Cosmology with CMB lensing-galaxy cross-correlations

Sunny Vagnozzi

The Oskar Klein Centre for Cosmoparticle Physics

CoPS lunch talk, Stockholm, June 2017

Why bother with mules?

Why do people bother with mules? Is it just the fun of watching a horse and donkey have sex? or do mules have some advantage over both these animals?

Keiko, Guangdong, China

Current situation

Precision cosmology data from CMB and large-scale structure (LSS):

CMB (Horse)

LSS (Donkey)

- Probes linear/quasilinear scales
- Systematics: astrophysical and instrumental
- Cannot do tomography

- Probes out to very small scales
- Systematics: photo-*z*, baryonic effects, intrinsic alignment...
- Can do tomography

Q: What do we want?

- A: We want a new offspring from CMB and LSS data which can:
 - Beat systematics
 - \bullet Construct new estimators \rightarrow additional constraining power
 - Enhance low amplitude signals \rightarrow optimise use of data
 - Probe interesting physics (fundamental and non)

CMB (Horse) \times LSS tracer (Donkey) =

[Primary CMB + Secondary CMB (lensing, kSZ, tSZ) + Foregrounds (CIB, galaxy) + Noise] × LSS tracer (Mule)

- Different datasets \rightarrow different/uncorrelated systematics
- $\bullet\,$ Both related to gravitational potential $\rightarrow\,$ probe density perturbations
- Can construct several new estimators which probe a lot of interesting physics

Solution: cross-correlations!

 $C_{\ell}^{\kappa g}$: cross-correlation of CMB lensing and galaxy density

Note: lensing convergence $\kappa \equiv -\nabla \cdot \mathbf{d}(\hat{\mathbf{n}})$, where $\mathbf{d}(\hat{\mathbf{n}})$ deflection field such that $\mathcal{T}(\hat{\mathbf{n}})_{\text{lensed}} = \mathcal{T}(\hat{\mathbf{n}} + \mathbf{d}(\hat{\mathbf{n}}))_{\text{unlensed}}$

Conclusions: what can we study with $C_{\ell}^{\kappa g}$?

Spoiler: lots of exciting stuff! For example:

- Neutrinos mass and hierarchy
- Primordial non-Gaussianity: initial conditions of the Universe
- Models of galaxy formation
- Models of gravity on ultra-large scales
- Models of dark energy
- Calibration of systematics, e.g. photo-zs (boring but necessary)

Some background: cross-correlations

Cross-correlate two projected 2D fields $X(\hat{n})$ and $Y(\hat{n})$:

$$X(\hat{n}) = \int dz \ W^X(z) \delta(\chi(z)\hat{n}, z), \quad Y(\hat{n}) = \int dz \ W^Y(z) \delta(\chi(z)\hat{n}, z)$$

On small angular scales (large ℓ), making Limber approximation:

$$C_{\ell}^{XY} = \int_0^{z^*} dz \; \frac{H^2(z)}{\chi^2(z)} W^X(z) W^Y(z) P\left(k = \frac{\ell}{\chi(z)}, z\right)$$

So cross-correlation expresses the "overlap" between two projected fields that at least in part probe the same underlying signal

Lensing convergence-galaxy density cross-correlation

CMB lensing convergence and galaxy density kernels:

$$W^{\kappa}(z) = \frac{3}{2H(z)}\Omega_m H_0^2(1+z)\chi(z)\frac{\chi^{\star}-\chi(z)}{\chi^{\star}}, \quad W^{g}(z) = \frac{b\frac{dN}{dz}}{\int dz'\frac{dN}{dz'}}$$

Cross-correlation:

$$C_{\ell}^{\kappa g} = \frac{3\Omega_m H_0^2}{2\int dz' \frac{dN}{dz'}} \int_{z_{\min}}^{z_{\max}} dz \ (1+z) \frac{\chi^* - \chi(z)}{\chi^* \chi(z)} \frac{dN}{dz} b\left(\frac{\ell}{\chi(z)}\right) P\left(\frac{\ell}{\chi(z)}, z\right)$$

Lensing convergence-galaxy density cross-correlation

Kernels

Cross-correlation of Planck lensing and SDSS-III BOSS DR12 CMASS

What is $C_{\ell}^{\kappa g}$ sensitive to?

- CMB lensing: weighted integral of matter power spectrum, so...
- $C_{\ell}^{\kappa g}$ sensitive to any parameter which affects the growth of structure, for example:
 - Massive ν
 - Dark energy
 - Modifications of gravity
 - Alternative dark matter models
- ...but it's not as sensitive to these parameters as many other probes we have (e.g. P(k))!

So why do we care?

What is $C_{\ell}^{\kappa g}$ sensitive to?

- Real power of $C_{\ell}^{\kappa g}$ is ability to break degeneracies between parameters:
 - Galaxy clustering amplitude $\propto b^2\sigma_8^2$
 - $C_\ell^{\kappa g} \propto b \sigma_8^2$
 - ightarrow can use $C_\ell^{\kappa g}$ to reconstruct "true" matter power spectrum!
 - (studying b is extremely interesting in its own right)
- Can do tomography, i.e. evolution of CMB lensing as a function of z...
- ...and thus study amplitude of growth of structure as a function of z:

$$\ddot{\delta} + \mathbf{2H}\dot{\delta} - 4\pi G\rho_m \delta = \mathbf{0}$$

Cool stuff with $C_{\ell}^{\kappa g}$: scale-dependent bias

• Galaxy (or for that matter any tracer) bias:

$$\delta_g = b\delta_m, \quad \Longrightarrow \ P_g(k) = b^2 P_m(k)$$

• Usually treated as scale-independent, however the simplest models of galaxy formation predict a scale-dependent bias: Desjacques, Jeong, Schmidt 2016

$$b(\mathbf{k}) = a + c\mathbf{k}^2$$

• Combining $C_{\ell}^{\kappa g}$ with P(k) constrains the scale-dependence...

• ...and can "reconstruct" the "true" matter power spectrum!

Cool stuff with $C_{\ell}^{\kappa g}$: galaxy formation models

- Future data can probe more "realistic" bias parametrizations and constrain models of galaxy formation e.g. Modi, White, Vlah 2017
- Can constrain stochasticity $\epsilon(\mathbf{x}, z)$:

$$\delta_{g}(\mathbf{x}, z) = b\delta_{m}(\mathbf{x}, z) + \epsilon(\mathbf{x}, z)$$

- Can be constrained by a mismatch between amplitude of $C_{\ell}^{gg} = b^2 C_{\ell}^{mm} + C_{\ell}^{\epsilon\epsilon}$ and $C_{\ell}^{\kappa g} = b C_{\ell}^{\kappa m}$

Cool stuff with $C_{\ell}^{\kappa g}$: neutrino masses

Massive neutrinos free-streaming suppress the growth of structure on small scales (large k), so:

- $C_{\ell}^{\kappa g}$ sensitive (but weakly) to M_{ν}
- M_{ν} is strongly degenerate with (scale-dependent) bias
- Corollary: P(k) data to constrain M_ν + C^{κg}_ℓ to constrain b(k) → great bounds on M_ν [spoiler: it's true]

Cool stuff with $C_{\ell}^{\kappa g}$: neutrino masses

But there's more!

- Usually have to cut-off P(k) data at $k \sim 0.1 h {\rm Mpc}^{-1}$ due to non-linearities... Giusarma et al. 2016, Vagnozzi et al. 2017
- ...part of which is our ignorance of the scale-dependent bias
- \implies P(k) data is not as competitive as other large-scale structure data (e.g. BAO) when it comes to M_{ν} Hamann et al. 2010, Vagnozzi et al. 2017
- Corollary: P(k) data to constrain M_ν + C_ℓ^{kg} to constrain b(k) → awesome bounds on M_ν because we can push P(k) data to higher k and use many more modes!
 [spoiler: it's quite true]

Cool stuff with $C_{\ell}^{\kappa g}$: neutrino masses

Summary:

- $C_{\ell}^{\kappa g} + P(k)$ breaks degeneracy between M_{ν} and $b(\mathbf{k})...$
- ...and allows to exploit P(k) at its full power!
- Gives great bounds on M_{ν}
- Could contribute to determining the neutrino hierarchy from cosmology

Cool stuff with $C_{\ell}^{\kappa g}$: primordial non-Gaussianity

Primordial non-Gaussianity: probes the initial conditions of our Universe

• Local primordial non-Gaussianity:

$$\Phi = \phi + f_{\mathsf{NL}}(\phi^2 - \langle \phi^2 \rangle)$$

- Mostly probes single-field vs multifield inflation
- Leaves an imprint in the large-scale-dependence of the bias: Dalal et al. 2008

$$\Delta b(k) = \frac{3(b_0 - 1)f_{\mathsf{NL}}\Omega_m H_0^2 \delta_c}{D(z)k^2 T(k)} \propto \frac{1}{k^2}$$

• Other types of non-Gaussianity (equilateral, orthogonal, etc.) also leave a less strong imprint on the bias

Cool stuff with $C_{\ell}^{\kappa g}$: primordial non-Gaussianity

- $C_{\ell}^{\kappa g}$ can constrain b(k) as we have seen...
- ... thus constraining $f_{\rm NL}$ Takeuchi et al. 2010
- Expected errors depend a lot on tracer sample, realistically $\Delta f_{\rm NL} \sim 30 50$ but optimistically even $\Delta f_{\rm NL} \sim 1$ with future surveys
- Galaxies might not be the best tracer to cross-correlate, quasars are an excellent candidate (but suffer from many systematics)

Cool stuff with $C_{\ell}^{\kappa g}$: modified gravity

- In GR lensing sensitive to $\nabla^2(\phi-\psi)\propto \nabla^2\phi\propto\delta$
- Idea: test whether "lensing = matter" comparing galaxy-lensing and galaxy-matter (-velocity) cross-correlations
- Use the following quantity: Zhang et al. 2007

$$\mathsf{E}_{\mathsf{G}} = \frac{\nabla^2(\phi - \psi)}{3H_0^2 a^{-1}\beta\delta}, \quad \beta = \frac{d\ln D}{d\ln a}$$

• In GR $E_G = \Omega_m / \beta$ is a constant

• In most modified gravity theories E_G is scale-dependent!

Cool stuff with $C_{\ell}^{\kappa g}$: modified gravity

• Estimate *E_G* through:

$$E_G = \frac{2c}{3H_0^2} \frac{H(z)f_g(z)}{(1+z)W^{\kappa}(z)} \frac{C_{\ell}^{\kappa g}}{\beta C_{\ell}^{gg}}$$

• This estimator for E_G is independent of b (galaxy bias) and σ_8 !

Cool stuff with $C_{\ell}^{\kappa g}$: modified gravity

Measurement of E_G using Planck lensing cross BOSS DR11 CMASS

GR prediction: $E_G(z = 0.57) = 0.402 \pm 0.012$ Measurement: $E_G(z = 0.57) = 0.243 \pm 0.060$ Pullen et al. 2016 $\sim 2.6\sigma$ tension with GR! Could be systematics, but persists in similar measurements Alam et al. 2017

Cool stuff with $C_{\ell}^{\kappa g}$: evolving dark energy

- Can use $C_{\ell}^{\kappa g}$ tomography to test the evolution of dark energy as a function of redshift
- Example: can constrain the dark energy equation of state w(z)
- Will help addressing the question: is dark energy a cosmological constant Λ or something more complicated?
- Some work in this direction especially with DES galaxies cross Planck/SPT lensing Soergel et al. 2015; Giannantonio et al. 2016

Cool stuff with $C_{\ell}^{\kappa g}$: calibrating systematics

 Use C_ℓ^{κg} to calibrate systematics such as photometric redshifts uncertainties. Actually use w^{κg}(θ) given by:

$$w^{\kappa g}(heta) = \sum_{\ell=0}^{\infty} \left(rac{2\ell+1}{4\pi}
ight) P_{\ell}(\cos heta) C_{\ell}^{\kappa g}$$

- Combine w^{κg}(θ) with w^{γτg}(θ)¹ to simultaneously calibrate systematics in photo-z of tracer and source galaxies
- General idea (e.g. with DES imes SPT lensing data): Baxter et al. 2016
 - Systematics in tracers photo-z affect both $w^{\gamma \tau g}(\theta)$ and $w^{\kappa g}(\theta)$
 - Systematics in source photo-z affect only $w^{\gamma \tau g}(\theta)$ but not $w^{\kappa g}(\theta)$
 - Joint measurement isolates effects of the two photo-z systematics

 $^{^{1}\}gamma_{T}$: tangential shear i.e. component of shear perpendicular to the line connecting the image of a source galaxy and a tracer galaxy

What did we want? Something from CMB and LSS data which could:

- Beat systematics
- Create new estimators
- Enhance low amplitude signals
- Probe interesting physics (both fundamental and non)

Conclusions: part 2

What did we get? $C_{\ell}^{\kappa g}$, which can probe lots of interesting physics:

- \bullet Scale-dependent bias \rightarrow galaxy formation models
- \bullet Stochasticity \rightarrow galaxy formation models
- Neutrino masses (and in future hierarchy)
- \bullet Primordial non-Gaussianity \rightarrow initial conditions of Universe
- Modified gravity \rightarrow is GR valid on large scales?
- Evolving dark energy \rightarrow simple cosmological constant or not?
- Calibration of systematics (e.g. photo-zs)

Mules again

