Answering ν kwastions with cosmology

Sunny Vagnozzi

The Oskar Klein Centre for Cosmoparticle Physics

Advances in theoretical cosmology in light of data Stockholm, July 2017

Let's go back in time...

What's in a ν ame?

Language	Word tree	Some branches	Meaning
Physics (Fermi 1934)	NEUTR-INO		Little neutral one 🔥
Italian	NEUTRO		Neutral
Latin	NE-UTER		Not either; neutral
Latin	UTER		Either
Greek	1 _	OUDETEROS	Neutral
Old High German		HWEDAR	Which of two; whether
Phonetic change/loss	[K]UOTER[US]		Which of the two?
Ionic Greek	KOTEROS		Which of the two?
Sanskrit	KATARAS		Which of the two?
Latin	1	QUANTUS	How much?
Sanskrit		KATAMAS	Which out of many?
Sanskrit		KATHA	How?
Sanskrit	/	KAS	Who?
Indo-European root	KA or KWA		Interrogative base

Answer: ν 's destiny is to raise kwastions!

Courtesy of Eligio Lisi, Summary Talk (Theory) at Neutrino 2010, Athens

Preliminary Q: why care about neutrinos?

Neutrinos are most likely to be the key to physics beyond the Standard Model

See José's talk

Asking the right Kwastions

• How strong are the bounds on M_{ν} from cosmology?

• Can cosmology tell us something about the mass hierarchy?

• Does shape (power spectrum) or geometry (BAO) currently tell us more about M_{ν} ?

- Q: How strong are the bounds on M_ν from cosmology?
 A: VERY
- Q: Can cosmology tell us something about the mass hierarchy?
 A: YES
- Q: Does shape (power spectrum) or geometry (BAO) currently tell us more about M_{ν} ?

A: GEOMETRY ¹

¹With many caveats.

Neutrino unknowns

- Absolute mass scale $M_{\nu} \equiv \sum_{i} m_{\nu_i}$?
- Mass hierarchy (normal or inverted), i.e. sign of m_{31}^2 ?
- θ_{23} octant?
- Dirac vs Majorana nature?
- CP violation?
- Sterile eigenstates?

Neutrino oscillations

- Sensitive to mass-squared differences $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$
- Exploits quantum-mechanical effects
- Currently not sensitive to the mass hierarchy

Cosmology

- Sensitive to sum of neutrino masses $M_{\nu} \equiv \sum_{i} m_{i}$
- Exploits GR+Boltzmann equations
- Tightest limits, but somewhat model-dependent

Beta decay

- Sensitive to effective electron neutrino mass $m_{\beta}^2 \equiv \sum_i |U_{ei}|^2 m_i^2$
- Exploits conservation of energy
- Model-independent, but less tight bounds

Neutrinoless double-beta decay

- Sensitive to effective Majorana mass $m_{\beta\beta} \equiv \sum_{i} |U_{e_{i}}^{2}m_{i}|$
- Exploits double-beta decay
- Limited by NME uncertainties and u nature

/ 31

- $C\nu B$ is a basic prediction of the standard cosmological model
- Weak interactions maintain us in equilibrium until $\mathcal{T} \sim 1\,\mathrm{MeV}$
- Below $\mathcal{T} \sim 1 \, \mathrm{MeV} \, \nu$ s free-stream keeping an equilibrium spectrum
- When the $T \lesssim M_{\nu}$, neutrinos turn non-relativistic, free-streaming suppresses growth of structure on small scales

• Today
$$T_{
u}\simeq 1.9\,{
m K}$$
, $n_{
u}\simeq 113\,{
m cm}^{-3}$, $N_{
m eff}=3.046$

ν story

Neutrinos behave as radiation at early times, as matter at late times

How can cosmology measure neutrino masses?

Courtesy of Martina Gerbino

Neutrino masses and the CMB: background level

Neutrino masses and the CMB: perturbation level

- Massive neutrinos free-streaming damps small-scale perturbations...
- ...less structure=less lensing=less smearing of the small-scale power spectrum of the CMB

Neutrino masses and the large-scale structure

Free-streaming of neutrinos suppresses growth of structure on small scales

Cosmological data: CMB

Note: red curve obtained from 6-parameter ACDM model fit to TT only

Cosmological data: galaxy power spectrum

Modelling of data within likelihood: $P_{\text{meas}}^{g}(k_i) = \sum_{j} W(k_i, k_j) P_{\text{true}}^{g}(k_j)$

Power on small scales is affected by free-streaming of neutrinos:

$$rac{\Delta P(k)}{P(k)} \sim -8 f_
u$$

Cosmological data: galaxy power spectrum, issues

• (Scale-dependent) bias and shot noise:

$$P^g = b^2 P^m(k, z) + P^s$$

- Non-linear effects: conservative cut-off $k_{max} = 0.2 \ h \ {
 m Mpc}^{-1}$
- Systematics modelled at the level of data:

$$P_{\text{meas}}(k) = P_{\text{meas},w}(k) - S[P_{\text{meas},nw}(k) - P_{\text{meas},w}(k)]$$

Cosmological datasets: Baryon Acoustic Oscillations

Approximately constrain the quantity $D_v(z_{\text{eff}})/r_s(z_{\text{drag}})$, where:

$$D_{v}(z) = \left[(1+z)^{2} D_{A}(z)^{2} \frac{cz}{H(z)} \right]^{\frac{1}{3}}$$

• Standard ruler: helpful in breaking degeneracies involving Ω_m and H_0

Substantially less affected by systematics

Cosmological datasets: other "external" datasets

- Optical depth to reionization τ (*lowP2016*)
- Direct measurements of the Hubble parameter H_0
- Planck SZ clusters

Each of them is important for resolving parameter degeneracies:

- $M_{\nu} \tau$ degeneracy in CMB and P(k): $\tau \downarrow \implies M_{\nu} \downarrow$
- $M_
 u H_0$ degeneracy with distance to last scattering: $H_0 \uparrow \Longrightarrow M_
 u \downarrow$

Standard analysis method

- Assume background ACDM: $\theta \equiv (\Omega_b h^2, \Omega_c h^2, \Theta_s, \tau, n_s, A_s, M_\nu)$
- Assume degenerate neutrino mass spectrum: $m_i = M_{\nu}/3$
- Prior $M_{\nu} > 0 \, \mathrm{eV}$ (using **only** cosmology information)
- Bayes' theorem: $P(m{ heta}|\mathbf{x}) \propto \mathcal{L}(\mathbf{x}|m{ heta}) imes \Pi(m{ heta})$
- Sample posterior using MCMC methods

Results: overview

- *PlanckTT+lowP*: $M_{\nu} < 0.716 \, \mathrm{eV}$ @95% C.L.
 - +P(k): < 0.299 eV
 - +P(k)+BAO: < 0.246 eV
 - +P(k)+BAO+ τ : < 0.205 eV
 - +P(k)+BAO+H₀: < 0.164 eV
 - +P(k)+BAO+H₀+τ:
 < 0.140 eV

 $\begin{aligned} & \textit{PlanckTT+lowP+TTTEEEE:} \\ & \textit{M}_{\nu} < \textbf{0.485} \, \mathrm{eV} \, \, \textbf{0}95\% \, \, \textbf{C.L.} \end{aligned}$

- $+P(k): < 0.275 \, eV$
- +P(k)+BAO: < 0.215 eV
- +P(k)+BAO+ τ : < 0.177 eV
- $+P(k)+BAO+H_0: < 0.132 \, eV$
- +P(k)+BAO+H₀+τ:
 < 0.109 eV

What's stronger: shape [P(k)] or geometrical (BAO) information? Examined by replacing DR12 CMASS P(k) by DR11 CMASS BAO

PlanckTT+lowP+BAO: $M_{\nu} < 0.186 \text{ eV} @95\% \text{ C.L.}$

- +*t*: < **0.151** eV
- $\bullet \ + \textbf{H}_0: \ < \textbf{0.148}\,\mathrm{eV}$
- +*H*₀+*τ*: < **0.115** eV

SV et al. 2017

PlanckTT+lowP+TTTEEEE: $M_{\nu} < 0.153 \text{ eV}$ @95% C.L.

- $+\tau$: < **0.118** eV
- +*H*₀: < 0.113 eV
- +H₀+τ: < 0.094 eV

 M_{ν} posteriors: pick a given color, then compare shape information (solid) with geometrical information (dashed) sv et al. 2017

Without small-scale polarization

With small-scale polarization

Shape vs geometry

Geometrical information more constraining than shape (this is a *win-win*, as BAO data also less affected by systematics).

BUT, three caveats:

- True within a background flat ACDM: shape information is *crucial* in extended cosmologies
- Depends strongly on conservative cut-off $k_{max} = 0.2 \ h \ {\rm Mpc}^{-1}$
- Depends *decisively* on our ignorance of the scale-dependent bias $b(k) \rightarrow$ determine b(k) using cross-correlation between CMB lensing and galaxies, $C_{\ell}^{\kappa g}$? Work in progress with Elena Giusarma, Simone Ferraro, Katherine Freese, Shirley Ho; talk in two weeks by Elena Giusarma

Scale-dependent bias

• CMB lensing convergence-galaxy angular cross-spectrum:

$$C_{\ell}^{\kappa g} = \frac{3H_0^2\Omega_m}{2c^2} \int_{z_1}^{z_2} dz \ \frac{\chi^{\star} - \chi(z)}{\chi(z)\chi^{\star}} (1+z) b\left(\frac{\ell}{\chi(z)}\right) P\left(\frac{\ell}{\chi(z)}, z\right)$$

• The simplest form of (scale-dependent) bias is given by:

$$b(k) = a + ck^2$$

• The bound from PlanckTT+lowP+P(k) can improve from $\sim 0.30 \,\mathrm{eV}$ to $\sim 0.15 \,\mathrm{eV!!}$

What about the mass hierarchy?

For each mass hierarchy, there exists a minimal allowed value for $M_{
u}$

Bayesian model comparison between hierarchies

Which of the two hierarchies?

- All cosmological sensitivity to hierarchy is entirely due to **volume effects**: how much parameter space is still available to the IH after I observed my data? see Massimiliano's talk
- $\bullet\,$ In the most optimistic case need a $0.02\,{\rm eV}$ sensitivity for a $2\sigma\,$ discrimination between NH and IH
- No sensitivity to hierarchy if upper limit on $M_{
 u}$ not better than $0.1\,{
 m eV}$
- Posterior odds for NH vs IH:

$$\frac{P(h = NH|\mathbf{x})}{P(h = IH|\mathbf{x})} = \frac{\int_{0.06 \text{ eV}}^{\infty} dM_{\nu} \ \mathcal{L}(M_{\nu})}{\int_{0.10 \text{ eV}}^{\infty} dM_{\nu} \ \mathcal{L}(M_{\nu})}$$

see also Hannestad & Schwetz 2016

Posterior odds for NH vs IH

Examples: SV et al. 2017

- $PlanckTT+lowP+BAO+\tau$: $M_{\nu} < 0.151 \text{ eV}$ @95% C.L. $p_N/p_I = 1.8 : 1$, IH excluded at 64% C.L.
- +*TTTEEE* M_{ν} < 0.118 eV @95% C.L. p_N/p_I = **2.4** : **1**, IH excluded at **71%** C.L.
- $+H_0+SZ$: $M_\nu < 0.093 \text{ eV}$ @95% C.L. $p_N/p_I = 3.3: 1$, IH excluded at 77% C.L.

...and be careful with your priors!!! See Massimiliano's talk

The future of neutrino cosmology

Bonus Q: what do future cosmological surveys have in store for ν s?

	$\sigma \left(\sum m_{\nu}\right) [\text{meV}]$
CMB Lensing (current galaxy clustering):	
Stage-IV CMB	45
Stage-IV CMB $+$ BOSS BAO	25
CMB Lensing + Galaxy clustering:	
Stage-IV CMB + eBOSS BAO	23
Stage-IV CMB + DESI BAO	16
Stage-IV CMB no lensing + DESI galaxy clustering	15/20
Galaxy Weak Lensing:	
Planck + LSST [51]	23
Planck + Euclid [48]	25

Credits: K. Abazajian et al., arXiv:1309.5383

A: a sure detection of M_{ν} and possibly of the mass hierarchy! See also

Massimiliano's talk

Conclusions

- Cosmology provides very tight constraints on ν masses, most robust $M_{\nu} < 0.151 \, {\rm eV}$ @95% C.L.
- Geometrical information stronger than shape, but with several caveats and room for improvement
- Data sensitive to hierarchy through volume effects if $M_{
 u} \lesssim 0.1 \, {
 m eV}$
- Weak (< 3: 1) preference for the normal hierarchy
- The future of ν cosmology is very bright!

What's in a ν ame?

Language	Word tree	Some branches	Meaning
Physics (Fermi 1934)	NEUTR-INO		Little neutral one 🔺
Italian	NEUTRO		Neutral
Latin	NE-UTER		Not either; neutral
Latin	UTER		Either
Greek	1	OUDETEROS	Neutral
Old High German		HWEDAR	Which of two; whether
Phonetic change/loss	[K]UOTER[US]		Which of the two?
Ionic Greek	KOTEROS		Which of the two?
Sanskrit	KATARAS		Which of the two?
Latin	1	QUANTUS	How much?
Sanskrit		KATAMAS	Which out of many?
Sanskrit		KATHA	How?
Sanskrit		KAS	Who?
Indo-European root	KA or KWA		Interrogative base