AG & LB Fysikum, Stockholms Universitet

Tentamen i Kosmologi och astropartikelfysik FK7007 9.00-14.00, 2012-05-30

Hjälpmedel: bifogad formelsamling, miniräknare och Physics Handbook.

- 1. a) Explain what is meant by the *critical energy density*, $\rho_c = \frac{3H^2}{8\pi G}$. What is its value today, i.e., ρ_c^0 ? (1p)
 - b) Show that the Friedmann equation can be written as:

$$H^{2} = H_{0}^{2} \left[\Omega_{\gamma} (1+z)^{4} + \Omega_{M} (1+z)^{3} + \Omega_{K} (1+z)^{2} + \Omega_{\Lambda} \right],$$

where $\Omega_M = \rho_M^0 / \rho_c^0, \Omega_\gamma = \rho_\gamma^0 / \rho_c^0, \ \Omega_K = -\frac{k}{a_0^2 H_0^2} \text{ and } \Omega_\Lambda = \frac{\Lambda}{3H_0^2}$ All indices '0' indicate values for z = 0. (3p)

- 2. a) Show that an empty, flat universe with $\Lambda > 0$ expands as $a(t) \propto e^{Ht}$. (2p) b) Explain the relevance of this solution for the early universe and why an exponential expansion could solve some of the problems of the Big Bang model. (2p)
- 3. Neutrinos are kept in thermal equilibrium in the early universe through weak interactions, with typical cross-sections $\sigma = \frac{\alpha^2 T^2}{M_W^4}$, where α is the fine-structure constant ($\approx 1/137$) and $M_W \approx 80 \text{ GeV/c}^2$ is the mass of the W-boson. The reaction rate is $\Gamma = n\sigma v$, where n and v are the neutrinos number density and average velocity.

a) Explain why weak interactions are weaker than electromagnetic interactions and have short range. (1p)

b) Explain the origin of a neutrino relic background.

c) Show that neutrinos "decouple" at a temperature $T \approx \left(\frac{m_W^4}{\alpha^2 M_{Pl}}\right)^{\frac{1}{3}} \approx 4$ MeV. (Recall that $M_{Pl} = \left(\frac{\hbar c}{G}\right)^{\frac{1}{2}}$). (2p)

Turn page! \rightarrow

(1p)

4. The number density of non-relativistic particles in thermal equilibrium is given by:

$$n_{NoRe} = g_i \left(\frac{mT}{2\pi}\right)^{\frac{3}{2}} e^{-\frac{m}{T}}$$

a) What are the interactions that can interchange neutrons and protons (i.e. start with one sort and end with the other)? (1p)b) Assuming a freeze out at $T_f=0.8$ MeV, estimate the relic abundance of ⁴He (i.e., the baryon mass fraction in ${}^{4}\text{He}$) assuming all neutrons are captured (2p) c) Explain the role of neutron life time and changes in T_f for the ⁴He abundance. (1p)

- 5. Explain why the following measurements are sensitive to cosmological parameters.
 - a) Dating of (old) stars and galaxies. (1p)
 - b) Distance measurements to Type Ia supernovae. (1p)(1p)
 - c) Strong gravitational lensing.
 - d) Anisotropies in the Cosmic Microwave Background. (1p)
- 6. a) Assuming a constant equation of state parameter w and a single fluid in a flat universe and $a_0 = 1$, show that

$$a(t) = \left(\frac{3(1+w)}{2}H_0t\right)^{\frac{2}{3(1+w)}}$$

Hint: start from the fluid equation in the compilation of formulae (2p)b) Show that the deceleration parameter $(q_0, also in the sheet)$ in such a universe becomes $q_0 = \frac{1+3w}{2}$. (2p)

Good luck!

Compilation of useful formulas

Equations

$$\begin{aligned} R_{\mu\nu} &- \frac{1}{2}g_{\mu\nu}R - \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu} ; \\ \frac{\ddot{a}}{a} &= -\frac{4\pi G}{3} \left(\rho + 3\frac{p}{c^2}\right) + \frac{\Lambda}{3} ; \\ \frac{p}{c^2} &= w \cdot \rho ; \end{aligned} \qquad \qquad H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{kc^2}{a^2} + \frac{\Lambda}{3} \\ \dot{\rho} + 3\frac{\dot{a}}{a} \left(\rho + \frac{p}{c^2}\right) = 0 \\ q_0 &= -\left(\frac{\ddot{a}(t_0)}{a(t_0)}\right) \frac{1}{H_0^2} \end{aligned}$$

Constants

Newton's constant	G		$6.672 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$
Speed of light	с		$2.998 \times 10^8 \text{ m s}^{-1}$
		or	$3.076 \times 10^{-7} \text{ Mpc year}^{-1}$
Planck's constant	$\hbar = h/2\pi$		$1.055 \times 10^{-34} \text{ m}^2 \text{ kg s}^{-1}$
Boltzmann's constant	k_B		$1.381 \times 10^{-23} \text{ J K}^{-1}$
		or	$8.619 \times 10^{-5} \text{ eV K}^{-1}$
Radiation constant	$\alpha = \pi^2 k_B^4 / 15\hbar^3 c^3$		$7.565 \times 10^{-16} \text{ J m}^{-3} \text{ K}^{-4}$
Electron mass	$m_e c^2$		$0.511 { m MeV}$
Proton mass	$m_p c^2$		$938.3 { m MeV}$
Neutron mass	$m_n c^2$		$939.6 { m MeV}$
Planck mass	$M_{Pl}c^2$		$1.2 \cdot 10^{19} { m GeV}$
Thomson cross-section	σ_e		$6.652 \times 10^{-29} \text{ m}^2$
Neutron halftime (free neutron)	$t_{n,1/2}$		611 s
Hubble constant	H_0		$100 \ h \ \rm km \ s^{-1} Mpc^{-1}$
		or	$H_0^{-1} = 9.77 h^{-1} \times 10^9 years$
h			0.704 ± 0.025

Conversion factors

$1 \text{ pc} = 3.261 \text{ light-year} = 3.086 \times 10^{16} \text{ m}$
$1 \text{ year} = 3.156 \times 10^7 \text{ s}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
$1 \ M_{\odot} = 1.989 \times 10^{30} \ \mathrm{kg}$