RA, Fysikum, Stockholms universitet

Tentamen i Kosmologi och astropartikelfysik FK7007 9.00-14.00, 2013-06-04

Hjälpmedel: bifogad formelsamling, miniräknare och Physics Handbook.

Write clearly and motivate your answers!

1. List two observations that support the Big Bang model.
2. The rotation curves, $v(r)$, for spiral galaxies have been observed to be close to flat for large radii. Using a test particle m, show that this is unexpected for radii $r>r_{\mathrm{vis}}$, where r_{vis} contains most of the visible matter, M_{vis}.
3. Show that $\left|\Omega_{k}\right|=\left|k /(a H)^{2}\right|$ will grow with time if $k \neq 0$ and the universe is either radiation or matter dominated, assuming that $a \propto t^{\frac{2}{3(1+w)}}$.
4. a) Explain the meaning of the Jeans length,

$$
\begin{equation*}
\lambda_{J}=\sqrt{\frac{\pi}{G \rho}} v_{s} \tag{1p}
\end{equation*}
$$

where, v_{s}, is the sound speed.
b) What happens with the Jeans length for baryons after baryon-photon decoupling?
c) If a significant fraction of the dark matter is hot (relativistic), e.g. in the form of neutrinos, how would the Jeans length be affected? What would the qualitative implication be on the matter power spectrum?
5. Show that the Hubble parameter, $H(z)$, can be written as

$$
\begin{equation*}
H(z)=H_{0}\left[(1+z)^{2}\left(1+\Omega_{M} z\right)-z(2+z) \Omega_{\Lambda}\right]^{1 / 2} \tag{1p}
\end{equation*}
$$

6. Photons decouple at the temperature of $T \sim 0.25 \mathrm{eV}$. Carry out an order-ofmagnitude calculation of the neutrino decoupling temperature, assuming $\sigma_{\text {weak }} \sim$ $\alpha^{2} T^{2} / m_{W}^{4}$, with the fine-structure constant $\alpha=1 / 137$. The expansion rate of the early universe is $H \sim T^{2} / m_{\mathrm{Pl}}$.
7. Calculate the Christoffel symbol $\Gamma^{0}{ }_{11}$ in an FLRW universe. Recall that

$$
\Gamma^{\sigma}{ }_{\mu \nu}=\frac{g^{\rho \sigma}}{2}\left[\frac{\partial g_{\nu \rho}}{\partial x^{\mu}}+\frac{\partial g_{\mu \rho}}{\partial x^{\nu}}-\frac{\partial g_{\mu \nu}}{\partial x^{\rho}}\right] .
$$

8. a) The luminosity distance, d_{L}, can be written as

$$
d_{L}=a \cdot r \cdot(1+z)=(1+z) \int_{0}^{z} \frac{d z^{\prime}}{H\left(z^{\prime}\right)}
$$

for a flat universe. Using the FLRW line-element, show that the angular distance, $D=d_{A} \cdot \delta \theta$, can be written as $d_{A}=d_{L} /(1+z)^{2}$, with D being the distance subtending the angle $\delta \theta$ on the sky. Hint: Remember that the sign of the lineelement is arbitrary.
b) For a universe with $\Omega_{M}=1$ and $\Omega_{\Lambda}=0$, show that the ratio $d_{A}(z=1) / d_{A}(z=$ $0.5)>1$ while $d_{A}(z=3) / d_{A}(z=1)<1$.
c) Explain, in words, what the result in b) predicts for galaxies with the same physical size observed at the three different redshifts.
9. Briefly describe four different methods to measure cosmological parameters (H_{0}, Ω_{M}, etc.).

Compilation of useful formulas

Equations

$\frac{\lambda_{0}}{\lambda_{e}}=\gamma\left(1-\frac{v}{c} \cos \theta\right)$
$H^{2}=\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho-\frac{k c^{2}}{a^{2}}+\frac{\Lambda}{3}=\quad \quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R-\Lambda g_{\mu \nu}=8 \pi G T_{\mu \nu}$
$=H_{0}^{2}\left[\Omega_{M}(1+z)^{3}+\Omega_{K}(1+z)^{2}+\Omega_{\Lambda}\right]$
$\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}\left(\rho+3 \frac{p}{c^{2}}\right)+\frac{\Lambda}{3} ;$
$\dot{\rho}+3 \frac{\dot{a}}{a}\left(\rho+\frac{p}{c^{2}}\right)=0$
$\frac{p}{c^{2}}=w \cdot \rho ;$
$q_{0}=-\left(\frac{\ddot{a}\left(t_{0}\right)}{a\left(t_{0}\right)}\right) \frac{1}{H_{0}^{2}}$
$n_{\mathrm{NoRe}}=g_{i}\left(\frac{m T}{2 \pi}\right)^{\frac{3}{2}} e^{-\frac{m}{T}} \quad n_{\mathrm{Re}}= \begin{cases}\frac{\zeta(3)}{\pi^{2}} g_{i} T^{3} & \text { Bose Einstein } \\ \frac{3}{4}\left(\frac{\zeta(3)}{\pi^{2}} g_{i} T^{3}\right) & \text { Fermi Dirac }\end{cases}$
$g_{\text {eff }}^{s}=\sum_{i=\text { bosons }} g_{i}\left(\frac{T_{i}}{T}\right)+\frac{7}{8} \sum_{j=\text { fermions }} g_{j}\left(\frac{T_{j}}{T}\right)^{3}$

Constants

Newton's constant	G		$6.672 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
Speed of light	c		$2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
		or	$3.076 \times 10^{-7} \mathrm{Mpc}$ year $^{-1}$
Planck's constant	$\hbar=h / 2 \pi$		$1.055 \times 10^{-34} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-1}$
Boltzmann's constant	k_{B}		$1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
		or	$8.619 \times 10^{-5} \mathrm{eV} \mathrm{K}^{-1}$
Radiation constant	$\alpha=\pi^{2} k_{B}^{4} / 15 \hbar^{3} c^{3}$		$7.565 \times 10^{-16} \mathrm{~J} \mathrm{~m}^{-3} \mathrm{~K}^{-4}$
Electron mass	$m_{e} c^{2}$		0.511 MeV
Proton mass	$m_{p} c^{2}$		938.3 MeV
Neutron mass	$m_{n} c^{2}$		939.6 MeV
W boson mass	$m_{W} c^{2}$		80 GeV
Z boson mass	$m_{Z} c^{2}$		91 GeV
Planck mass	$M_{P l} c^{2}$		$1.2 \cdot 10^{19} \mathrm{GeV}$
Thomson cross-section	σ_{e}		$6.652 \times 10^{-29} \mathrm{~m}^{2}$
Neutron halftime (free neutron)	$t_{n, 1 / 2}$		611 s
Hubble constant	H_{0}		$100 \mathrm{hkm} \mathrm{s}{ }^{-1} \mathrm{Mpc}^{-1}$
		or	$\mathrm{H}_{0}^{-1}=9.77 \mathrm{~h}^{-1} \times 10^{9}$ years
h			0.704 ± 0.025
Cosmological constant	Λ		$10^{-35} \mathrm{~s}^{-2}, 10^{-47} \mathrm{GeV}^{4}, 10^{-29} \mathrm{~g} / \mathrm{cm}^{3}$

Conversion factors

$$
\begin{gathered}
1 \mathrm{pc}=3.261 \text { light-year }=3.086 \times 10^{16} \mathrm{~m} \\
1 \mathrm{year}=3.156 \times 10^{7} \mathrm{~s} \\
1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J} \\
1 \mathrm{~K}=8.62 \times 10^{-5} \mathrm{eV} \\
1 M_{\odot}=1.989 \times 10^{30} \mathrm{~kg} \\
\hline
\end{gathered}
$$

