The trouble with spatial curvature: present, future, and model-independent determinations

Sunny Vagnozzi

Newton-Kavli Fellow @ KICC, University of Cambridge

☑ sunny.vagnozzi@ast.cam.ac.uk
☑ sunnyvagnozzi
☑ SunnyVagnozzi
☑ SunnyVagnozzi

Tehran Meeting on Cosmology at the Crossroads, 22-25 February 2021

What is the shape of the Universe?

What is the sign of the spatial curvature parameter Ω_K ? Can we get model-independent constraints on Ω_K ?

- It is true that *Planck* CMB temperature and polarization data appears to prefer a spatially closed Universe ($\Omega_K < 0$)
- However, to get a *reliable* constraint we must combine *Planck* with external data to break the *geometrical degeneracy* in a *reliable* way...
- ullet ...from which we learn that the Universe is flat to the $\sim {\cal O}(10^{-2})$ level
- (and yes, one can infer Ω_K in a cosmology-free way!)

Planck 2018 temperature power spectrum

The geometrical degeneracy

How far away is this person (hopefully more than 2m)? dHow tall is this person? hOnly data: angle subtended by this person $\theta \approx h/d$

You can't disentangle distance and height from this data alone: geometrical degeneracy!

Breaking the geometrical degeneracy

Answer: roughly 7m away and roughly 3m tall

How to break the geometrical degeneracy?

Need to pin down post-recombination expansion rate: Ω_m , H_0 , H(z),...

$$D_{A}(z) = \int_{0}^{z} \frac{dz'}{H(z')} \simeq \int_{0}^{z} \frac{dz'}{H_{0}\sqrt{\Omega_{m}(1+z')^{3} + \Omega_{K}(1+z')^{2} + (1-\Omega_{m}-\Omega_{K})}}$$

$$\downarrow$$

$$\theta_{s} = \frac{r_{s}(z_{\mathrm{LS}})}{D_{A}(z_{\mathrm{LS}})} = \frac{\int_{z_{\mathrm{LS}}}^{\infty} \frac{dz'}{H(z')}}{\int_{0}^{z_{\mathrm{LS}}} \frac{dz'}{H(z'')}} \longrightarrow \begin{cases} \theta_{s}(H_{0}, \Omega_{m}, \Omega_{K}) \approx 0.0104 \\ \Omega_{m}h^{2} \approx 0.15 \\ D_{i}(z_{i}, H_{0}, \Omega_{m}, \Omega_{K}) = x_{i} \\ H_{i}(z_{i}, H_{0}, \Omega_{m}, \Omega_{K}) = y_{i} \end{cases} \text{ or }$$

So a good way to break the geometrical degeneracy is to measure distances and expansion rates in the late-time Universe

CMB and BAO

Planck 2018 results (Plik likelihood)

 $\Omega_{\mathcal{K}} = -0.044^{+0.018}_{-0.015} \rightarrow \text{apparent} \approx 3\sigma \text{ detection of } \Omega_{\mathcal{K}} \neq 0?$

Implausible values of H_0 and Ω_m , excluded by any other independent local/late-time measurements

Related to A_{lens} problem, CamSpec analysis (with access to larger sky fraction) and ACT DR4 results support possible fluke interpretation

Breaking the geometrical degeneracy

Examples: Planck TTTEEE+lowI+lowE

+full-shape galaxy power spectrum

Credits: Planck public chains

+BAO

Tensions with external datasets?

Should we believe results coming from the combination of datasets in tension *within a given model*? Can we break the geometrical degeneracy in a different way?

Breaking the geometrical degeneracy in an inconsistent way

An impasse?

- We want to break the geometrical degeneracy with external ("ext") datasets to stabilize *Planck* constraints on Ω_K
- *Planck*+ext always points towards $\Omega_K = 0$, but at the cost of significant tensions within $\Lambda CDM + \Omega_K$
- Another problem: some of these external datasets (*e.g.* BAO and FS) carry some amount of model-dependence in the form of fiducial cosmological assumptions during data reduction process

Need a "golden dataset" which:

- helps to break the geometrical degeneracy once combined with *Planck* CMB temperature and polarization data
- is not in strong tension with *Planck* data when working within a non-flat Universe
- is as model-independent as possible

Cosmic chronometers

$$\frac{dt}{dz} = -\frac{1}{(1+z)H(z)}$$

Take two ensembles of passively evolving galaxies that formed at the same time and are separated by a small redshift interval Δz around z_{eff} :

$$H(z_{
m eff}) = -rac{1}{1+z_{
m eff}}rac{\Delta z}{\Delta t}$$

THE ASTROPHYSICAL JOURNAL

Galaxy Ages	Citations 340
Raul Jimenez ¹ and Abraham Loeb ²	Turn on MathJax
© 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. The Astrophysical Journal, Volume 573, Number 1	Get permission to re-use th article
Article PDF	Share this article

Jiménez & Loeb, ApJ 573 (2002) 37

Use massive, early-time, passively-evolving galaxies (evolving on a much longer timescale than their age differences)

Combining *Planck* with CC

Planck+*CC*: Ω_{K} = −0.0054 ± 0.0055 → consistent with Ω_{K} = 0 @< 1 σ

Combining Planck with Pantheon

$\textit{Planck+Pantheon}~\Omega_{\textit{K}} = -0.0064 \pm 0.0058$

Caveat: 7-parameter $\Lambda CDM + \Omega_K$, freeing *w* moves towards "phantom closed" Universe for both *Planck+CC* and *Planck+Pantheon* For *Planck+CC* see

SV, Loeb & Moresco, ApJ 908 (2021) 84; for Planck+Pantheon see Di Valentino, Melchiorri & Silk, ApJL 908 (2021) L9

Model-independent constraints on spatial curvature

Assuming only FLRW metric:

$$\begin{aligned} H_0 d_L &= \frac{c(1+z)}{\sqrt{|\Omega_K|}} \mathrm{sinn} \left(\sqrt{|\Omega_K|} \int_0^z \frac{dz'}{E(z')} \right) \\ \mathrm{sinn} &= \begin{cases} \mathrm{sin} & \mathrm{if } \Omega_K < 0 \\ \mathrm{sinh} & \mathrm{if } \Omega_K > 0 \end{cases} \end{aligned}$$

 $H_0 d_L$: from *uncalibrated* (Hubble flow) SNeIa (*Pantheon*) $E(z) = H(z)/H_0$: from cosmic chronometers

Dhawan, SV, Alsing, in preparation

Model-independent constraints on spatial curvature

Heuristically 2-step process:

- infer *E*(*z*) from CC with GP regression
- use CC-inferred E(z) and H₀d_L from SNela data to infer Ω_K without assuming any cosmology

In reality: sample joint posterior of Ω_K , H(z), \mathcal{M} , and GP hyperparameters, where the prior on H(z) is a Gaussian process \implies marginalize over all parameters (including GP hyperparameters) \implies infer Ω_K

Model-independent constraints on spatial curvature

- With current data (*Pantheon* SNela, current CC): $\Omega_K = 0.02 \pm 0.25$
- With future data (SNela from NGRST, BAO from DESI, Euclid, NGRST, VRO): $\sigma_{\Omega_K} \sim 0.03$

Conclusions

- Curvature parameter Ω_K is a key quantity in cosmology
- Planck temperature and polarization prefer Ω_K < 0, but need to break geometrical degeneracy without incurring in tensions!
- Achieved combining *Planck* with cosmic chronometer or *Pantheon* Hubble flow SNela, combination consistent with spatial flatness
- Combining cosmic chronometers and Hubble flow SNeIa allows for a model-independent determination of $\Omega_{\mathcal{K}}$ (currently to the 10^{-1} level, in the future to the 10^{-2} level)

\bullet Universe is spatially flat to the $\mathcal{O}(10^{-2})$ level