Searching for dark energy off the beaten track

Sunny Vagnozzi

Newton-Kavli Fellow @ KICC, University of Cambridge

 \boxtimes sunny.vagnozzi@ast.cam.ac.uk

💭 sunnyvagnozzi

☆ www.sunnyvagnozzi.com

🔰 @SunnyVagnozzi

ETH Zürich, 5 July 2021

Dark Energy

- Part I: "Direct Detection of Dark Energy"
- Part II: (early and late) consistency tests of ACDM and what they might teach us about (early and late) dark energy
- Part III: new ways to search for dark energy and new light particles

Understanding dark energy's properties

Lots of focus on understanding gravitational signatures of dark energy, and in particular constraining its equation of state w

Are gravitational signatures all there is?

Direct detection of dark energy

Can we detect dark energy in underground labs nominally devoted to the direct detection of dark matter?

Direct detection of dark energy: the XENON1T excess and future prospects

Sunny Vagnozzi,^{1,2,*} Luca Visinelli,^{3,4,†} Philippe Brax,^{5,‡} Anne-Christine Davis,^{6,1,§} and Jeremy Sakstein^{7,§}
¹Kawli Institute for Cosmology (KICC), University of Cambridge, Madingly Road, Cambridge CB3 0HA, United Kingdom^{**}
²Institute of Astronomy (IoA), University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom
³Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Froscati, C.P. 13, 1-100044 Frascati, Italy^{**}
⁴Gravitation Astroparticle Physics Amsterdam (GRAPPA), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
⁵Institute de Physique Theórique (IPhT), Universite Paris-Saclay, CNRS, CEA, F-91191, Off-sur-Yeute Cedex, France
⁶Department of Applied Mathematics and Theoretical Physics (DAMTP), Center for Mathematical Sciences, University of Cambridge, CD3 0WA, United Kingdom
⁷Department of Physics E Astronomy, University, Mawi'i, Watanabe Hall, 2505 Correa Road, Honolulu, HI, 96822, USA (Date: April 1, 2011)

Luca Visinelli (INFN Frascati)

Phil Brax (IPhT, Saclay)

Anne Davis (Cambridge)

Jeremy Sakstein (Hawaii)

Can dark energy and visible matter talk to each other?

Quintessence and the Rest of the World: Suppressing Long-Range Interactions

Sean M. Carroll Phys. Rev. Lett. **81**, 3067 – Published 12 October 1998

If DE due to a new particle, this typically will:

- be very light $[m \sim H_0 \sim \mathcal{O}(10^{-33})\,\mathrm{eV}]$
- have gravitational-strength coupling to matter (inevitable unless protected by a symmetry!)

Result/immediate obstacle: long-range fifth forces!

$$F_5 = -rac{1}{M_5^2} rac{m_1 m_2}{r^2} e^{-r/\lambda_5} \,, \quad M_5 \sim M_{
m Pl} \,, \quad \lambda_5 \sim m^{-1} \sim H_0^{-1}$$

Screening

How to satisfy fifth-force tests?

- Tune the coupling to be extremely weak $[M \ll M_{
 m Pl}]$
- Tune the range to be extremely short $[\lambda \ll \mathcal{O}(\mathrm{mm})]$

(At least) 3 ways to screen

$$F_5 = -rac{1}{M_5^2(\mathbf{x})} rac{m_1 m_2}{r^{2-n(\mathbf{x})}} e^{-r/\lambda_5(\mathbf{x})}$$

- $\lambda_5(\mathbf{x}) \rightarrow$ **chameleon** screening (short range in dense environments)
- $M_5(\mathbf{x}) \rightarrow$ symmetron screening (weak coupling in dense environments)
- $n(x) \rightarrow$ Vainshtein (force drops faster than $1/r^2$ around objects)

Chameleon screening

Fifth force range $\lambda(\mathbf{x})$ becomes short in dense environments, scalar field minimizes effective potential determined by coupling to matter

Direct detection of dark energy

Production

Production in strong magnetic fields of the tachocline

Detection

Analogous to photoelectric and axioelectric effects

Direct detection of (chameleon-screened) dark energy

Best-fit DE-electron interaction cross-section $\sigma \sim \mathcal{O}(b) \sim \mathcal{O}(10^{-25}) \, \mathrm{cm}^2$

SV et al., arXiv:2103.15834 Image editing credits: Cristina Ghirardini

Cosmological direct detection of dark energy

Wouldn't barn-scale DE scattering mess up all cosmological observables?

MNRAS 493, 1139–1152 (2020) Advance Access publication 2020 February 3 doi:10.1093/mnras/staa311

Do we have any hope of detecting scattering between dark energy and baryons through cosmology?

Sunny Vagnozzi[®],1*† Luca Visinelli,² Olga Mena³ and David F. Mota⁴

¹Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

² Gravitation Astroparticle Physics Amsterdam (GRAPPA), University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam, the Netherlands

³Instituto de Física Corpuscular (IFIC), University of Valencia-CSIC, E-46980 Valencia, Spain

⁴Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo, Norway

Surprisingly not!

Luca Visinelli (INFN Frascati)

Olga Mena (Valencia)

David Mota (Oslo)

Cosmological direct detection of dark energy

$$\dot{\theta}_{b} = -\mathcal{H}\theta_{b} + c_{s}^{2}k^{2}\delta_{b} + \frac{4\rho_{\gamma}}{3\rho_{b}}an_{e}\sigma_{T}(\theta_{\gamma} - \theta_{b}) + (1 + w_{x})\frac{\rho_{x}}{\rho_{b}}an_{e}\sigma_{xb}(\theta_{x} - \theta_{b})$$

$$\dot{\theta}_{x} = -\mathcal{H}(1 - 3c_{s}^{2})\theta_{x} + \frac{c_{s}^{2}k^{2}}{1 + w_{x}}\delta_{x} + an_{e}\sigma_{xb}(\theta_{b} - \theta_{x})$$

Impact on CMB ($\alpha = \sigma_{xb}/\sigma_T$)

Cosmological direct detection of dark energy

$$\dot{\theta}_{b} = -\mathcal{H}\theta_{b} + c_{s}^{2}k^{2}\delta_{b} + \frac{4\rho_{\gamma}}{3\rho_{b}}an_{e}\sigma_{T}(\theta_{\gamma} - \theta_{b}) + (1 + w_{x})\frac{\rho_{x}}{\rho_{b}}an_{e}\sigma_{xb}(\theta_{x} - \theta_{b})$$

$$\dot{\theta}_{x} = -\mathcal{H}(1 - 3c_{s}^{2})\theta_{x} + \frac{c_{s}^{2}k^{2}}{1 + w_{x}}\delta_{x} + an_{e}\sigma_{xb}(\theta_{b} - \theta_{x})$$

Impact on linear matter power spectrum ($\alpha = \sigma_{xb}/\sigma_T$)

Cosmological direct detection of dark energy: N-body simulations

Impact on non-linear matter power spectrum

Ferlito, SV, Baldi, Mota, in preparation

Fulvio Ferlito (Bologna)

Marco Baldi (Bologna)

Ferlito, SV, Baldi, Mota, in preparation

David Mota (Oslo)

Cosmological direct detection of dark energy: N-body simulations

Baryons

Ferlito, SV, Baldi, Mota, in preparation

Fulvio Ferlito (Bologna)

Marco Baldi (Bologna)

Ferlito, SV, Baldi, Mota, in preparation

David Mota (Oslo)

Cosmological direct detection of dark energy: N-body simulations

Baryons

Ferlito, SV, Baldi, Mota, in preparation

Fulvio Ferlito (Bologna)

Marco Baldi (Bologna)

Ferlito, SV, Baldi, Mota, in preparation

David Mota (Oslo)

Baryons

Recap

Direct detection of dark energy

- Lots of unharvested potential for direct detection of dark energy in dark matter direct detection experiments
- Room for large dark energy-baryons interactions in cosmology...
- ...possibly tightly constrained by (non-linear) LSS clustering!

Where else might we learn something about dark energy (at early and late times)?

Perhaps from the Hubble tension!

Viewing the Hubble tension ocean with different eyeglasses

Credits: Riess, Nat. Rev. Phys. 2 (2020) 10

Why does Λ CDM fit data so well? Do we really need new physics? If so, at what time(s), and with what ingredients?

The Hubble tension and new physics

Hubble tension appears to call for (substantial) early-time new physics...

Increasing H(z) just prior to z_* : "least unlikely" proposal?

Example: early dark energy (some debate as to how much it works)

Featured in Physics Editors' Suggestion
Early Dark Energy can Resolve the Hubble Tension
Vivian Poulin, Tristan L. Smith, Tanvi Karwal, and Marc Kamionkowski Phys. Rev. Lett. 122 , 221301 – Published 4 June 2019
Editors' Suggestion
Early dark energy does not restore cosmological concordance J. Colin Hil, Evan McDonough, Michael W. Toomey, and Stephon Alexander Phys. Rev. D 102 , 043507 – Published 5 August 2020
Need \approx 12% (!!!) EDE around $z_{ m eq}$
Why is there no clear sign of new physics in CMB data alone?

Early-time consistency tests of ACDM

Why is there no clear sign of early-time new physics in CMB data alone?

Why does ΛCDM fit CMB data so well?

(Early-time) Consistency tests of ΛCDM

The early ISW (eISW) effect

Around recombination: Universe not fully matter dominated \implies residual decay of gravitational potentials \implies eISW effect sources anisotropies

(A substantial amount of) New physics increasing H(z) around z_{eq}/z_{\star} should leave an imprint on the eISW effect!

eISW consistency test

Consistency tests of $\Lambda {\rm CDM}$ from the early ISW effect: implications for early-time new physics and the Hubble tension

Sunny Vagnozzi^{1,*}

¹Kavli Institute for Cosmology (KICC) and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom

Introduce scaling amplitude/fudge factor $A_{\rm eISW}$ sv, arXiv:2105.10425

$$\Theta_{\ell}^{\mathsf{eISW}}(k) = \mathbf{A}_{\mathbf{eISW}} \int_{0}^{\eta_{m}} d\eta \, e^{-\tau} \left(\dot{\Psi} - \dot{\Phi} \right) j_{\ell}(k\Delta\eta)$$

Consistency check: within ΛCDM , is the data consistent with $A_{\rm eISW} = 1$?

Looks familiar? It should remind you of A_{lens} Calabrese et al., PRD 77 (2008) 123531

$$C_{\ell}^{\phi\phi} o A_{\rm lens} C_{\ell}^{\phi\phi}$$

eISW consistency test

23 / 42

eISW consistency test

Is the data consistent with $A_{\rm eISW} = 1$? (7-parameter $\Lambda CDM + A_{\rm eISW}$)

Yes!

Parameter	Planck		
	ACDM	$\Lambda \text{CDM} + A_{\text{eISW}}$	
$100\omega_b$	2.235 ± 0.015	2.241 ± 0.020	
ω_c	0.1202 ± 0.0013	0.1203 ± 0.0014	
θ_s	1.0409 ± 0.0003	1.0409 ± 0.0003	
au	0.0544 ± 0.0078	0.0541 ± 0.0078	
$\ln(10^{10}A_s)$	3.045 ± 0.016	3.046 ± 0.016	
n_s	0.965 ± 0.004	0.963 ± 0.005	
$A_{\rm eISW}$	1.0	0.988 ± 0.027	
$H_0 [{ m km/s/Mpc}]$	67.26 ± 0.57	67.28 ± 0.62	
Ω_m	0.317 ± 0.008	0.317 ± 0.009	

SV, arXiv:2105.10425

Other parameter constraints very stable, no more than $\approx 0.3\sigma$ shifts

SV, arXiv:2105.10425

Implications for early-time new physics: EDE case study

High H_0 EDE fit to CMB at the cost of increase in $\omega_c \rightarrow$ worsens tension with WL/LSS data? Hill *et al.*, PRD 102 (2020) 043507; Ivanov *et al.*, PRD 102 (2020) 103502; D'Amico *et al.*, JCAP 2105 (2021) 072; see partial rebuttals in: Murgia *et al.*, PRD 103 (2021) 063502; Smith *et al.*, arXiv:2009.10740

Editors' Suggestion

Early dark energy does not restore cosmological concordance

J. Colin Hill, Evan McDonough, Michael W. Toomey, and Stephon Alexander Phys. Rev. D 102, 043507 – Published 5 August 2020

Parameter	ΛCDM	EDE (high ω_c)	EDE (low ω_c)
$100\omega_b$	2.253	2.253	2.253
ω_c	0.1177	0.1322	0.1177
$H_0 [{ m km/s/Mpc}]$	68.21	72.19	72.19
τ	0.085	0.072	0.072
$\ln(10^{10}A_s)$	3.0983	3.0978	3.0978
n_s	0.9686	0.9889	0.9889
$f_{\rm EDE}$	-	0.122	0.122
$\log_{10} z_c$	-	3.562	3.562
θ_i	-	2.83	2.83
n	-	3	3

Implications for early-time new physics: EDE case study

Let's extract only the eISW contribution to temperature anisotropies...

Low ω_c

High ω_c

Almost 20% elSW excess! No more than \leq 3-5% elSW excess Generic to models increasing pre-recombination H(z), not just EDE

Early dark energy problems

Example: neutrino mass (nominally need $M_{
m
u} \sim 0.3\,{
m eV}$ to rescue EDE!)

Reeves, SV, Efstathiou, Sherwin, in preparation. Plot credits: Alex Reeves

Other possible ingredients: decaying DM, DM-dark radiation interactions (work in progress)

Alex Reeves (Cambridge \rightarrow ETH)

George Efstathiou (Cambridge)

Blake Sherwin (Cambridge)

Early dark energy problems

Massive neutrinos actually turn out not to work:

- Increase in S₈ (actually worsens S₈ discrepancy)
- M_{ν} negatively correlated with H_0 for CMB
- Need $M_{
 u} \sim 0.3\,{
 m eV}$, very hard to accommodate in LSS data

Reeves, SV, Efstathiou, Sherwin, in preparation. Plot credits: Alex Reeves

Alex Reeves (Cambridge \rightarrow ETH)

George Efstathiou (Cambridge)

Blake Sherwin (Cambridge)

Aside: S_8 discrepancy – something to get excited about?

MNRAS 505, 5427–5437 (2021) Advance Access publication 2021 June 5 https://doi.org/10.1093/mnras/stab1613

Arbitrating the S_8 discrepancy with growth rate measurements from redshift-space distortions

Rafael C. Nunes1* and Sunny Vagnozzi 02

¹Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, Avenida dos Astronautas 1758, 12227-010 São José dos Campos, Brazil ²Kavli Institute for Cosmology (KICC), University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

- Always important to look at tensions/discrepancies with a different set of eyeglasses
- From the growth rate (f σ₈) point of view, S₈ discrepancy perfectly compatible with a statistical fluctuation!

Rafael Nunes (INPE, Brazil)

Nunes & SV, MNRAS 505 (2021) 5427

Late-time consistency tests of ACDM

Is ΛCDM really all there is at late times?

(Try to) Test ACDM making no assumptions about early-time physics

Learn something about H_0 in the process?

Old astrophysical objects at high redshift

Historically (1960s-1998) high-z OAO provided the first hints for the existence of dark energy ($\Omega \neq 1$, $\Omega_{\Lambda} > 0$)

A 3.5-Gyr-old galaxy at redshift 1.55

James Dunlop, John Peacock, Hyron Spinrad, Arjun Dey, Raul Jimenez, Daniel Stern & Rogier Windhorst

Nature 381, 581–584 (1996) Cite this article

Conflict over the age of the Universe

M. Bolte & C. J. Hogan

Nature 376, 399-402 (1995) Cite this article

The observational case for a low-density Universe with a non-zero cosmological constant

J. P. Ostriker & Paul J. Steinhardt

Nature 377, 600-602 (1995) Cite this article

What can OAO do for cosmology in the 2020s?

Cosmology with old astrophysical objects

Can the ages of the oldest inhabitants of the Universe teach us something about the Universe's contents (including DE) and the Hubble tension?

Implications for the Hubble tension from the ages of the oldest astrophysical objects

Sunny Vagnozzi,^{1,*} Fabio Pacucci,^{2,3,†} and Abraham Loeb^{2,3,‡}

¹Kavli Institute for Cosmology (KICC) and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom ²Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA 02138, USA ³Black Hole Initiative, Harvard University, Cambridge, MA 02138, USA

Fabio Pacucci (Harvard)

Avi Loeb (Harvard)

Yes, while probing a region where Λ CDM may still break $(1 \ll z \lesssim 10)!$

Cosmology with old astrophysical objects

$$t_U(z) = \int_z^\infty rac{dz'}{(1+z')H(z')} \propto rac{1}{H_0}$$

Pros and cons:

- $\bullet\,$ OAO cannot be older than the Universe $\rightarrow\,$ upper limit on H_0
- $t_U(z)$ integral insensitive to early-time cosmology
- \implies late-time consistency test for ACDM independent of the early-time expansion!
- Ages of astrophysical objects at z > 0 hard to estimate robustly $\boxed{\mathbb{A}}$

Usefulness in relation to the Hubble tension:

- Contradiction between OAO upper limit on H_0 and local H_0 measurements could indicate the need for non-standard late-time ($z \lesssim 10$) physics, or non-standard local physics
- Conclusions completely independent of pre-recombination physics

OAO age-redshift diagram

Age-redshift diagram up to $z\sim 8$

Galaxy ages estimated (mostly by CANDELS team) via SED fitting, QSOs ages via growth model Pacucci et al., ApJ Lett. 850 (2017) L42

Results

Assume ACDM at late times, constrain H_0 , Ω_m , and incubation time τ_{in}

Prior for $au_{
m in}$ following Jiménez et al., JCAP 1903 (2019) 043; Valcin et al., JCAP 2012 (2020) 022

- *H*₀ < 73.2 (95% C.L.)
- $\approx 2\sigma$ tension with Cepheid-calibrated SNela H_0 measurement
- Tighter (but less robust) results using non-flat prior on Ω_m
- (in principle can also constrain w, Ω_K,...)

Implications for the Hubble tension

CAVEAT - if the OAO ages are reliable, possible explanations include:

- #1: ACDM is not the end of the story at $z \lesssim 10$
- #2: Nothing wrong with ACDM at z ≤ 10, need local new physics...
 Examples: screened 5th forces (Desmond *et al.*, PRD 100 (2019) 043537; Desmond & Sakstein, PRD 102 (2020) 023007), breakdown of FLRW (Krishnan *et al.*, arXiv:2105.09790; arXiv:2106.02532),++
- #3: Just a boring 2σ fluke or systematics?

If #1, maybe the answer to the Hubble tension is a combination of (mostly) pre-plus-post-recombination new physics? If #2, maybe the Hubble tension is not cosmological, but non-local vs local discrepancy? See hints for this in Lin, Chen & Mack, arXiv:2102.05701

Several other hints that pre-recombination new physics alone not enough to solve Hubble tension Krishnan *et al.*, PRD 102 (2020) 103525; Jedamzik *et al.*, Commun. Phys. 4 (2021)

123; Lin et al., arXiv:2102.05701; Dainotti et al., ApJ 912 (2021) 150

Recap

Consistency tests of ΛCDM

- Early times: no signs of new physics in early ISW effect $\rightarrow A_{eISW} \approx 1$ sets important challenge for early-time new physics (EDE case study)
- Late times: slight discrepancy between ages of oldest astrophysical objects (upper limit on *H*₀) and local *H*₀ measurements
- Early-time new physics alone not enough for the Hubble tension?

Other ways to learn about dark energy or more generically new light particles?

Fundamental physics from black hole shadows

Testing the rotational nature of the supermassive object M87* from the circularity and size of its first image

Cosimo Bambi, Katherine Freese, Sunny Vagnozzi, and Luca Visinelli Phys. Rev. D 100, 044057 – Published 29 August 2019

Hunting for extra dimensions in the shadow of M87*

Sunny Vagnozzi and Luca Visinelli Phys. Rev. D 100, 024020 – Published 12 July 2019

Magnetically charged black holes from non-linear electrodynamics and the Event Horizon Telescope

Alireza Allahyari¹, Mohsen Khodadi¹, Sunny Vagnozzi² and David F. Mota³ Published 4 February 2020 e 0 2020 IOP Publishing Ltd and Sista Medialab Journal of Cosmology and Astroparticle Physics, Volume 2020, February 2020 Citation Alireza Allahyari et al JCAP02(2020)003

Concerns regarding the use of black hole shadows as standard rulers

Sunny Vagnozzi^{4,1} (2), Cosimo Bambi² (2) and Luca Visinelli³ Published 25 March 2020 + 0 2020 (DP Publishing Ltd Classical and Quantum Gravity, Volume 37, Number 8 Classical and Quantum Gravity, Volume 37, Number 8 Classical Suny Vagnozzi et al 2020 Class. Quantum Grav. 37 087001

Black holes with scalar hair in light of the Event Horizon Telescope

Mohsen Khodadi¹, Alireza Allahyari¹, Sunny Vagnozzi² and David F. Mota³ Publishei 14 September 2020 - © 2020 IOP Publishing Ltd and Sissa Medialab Journal of Cosmology and Astroparticle Physics, Volume 2020, September 2020 Citation Mohsen Khodedi et al JCAP99(2020)266

Credits: Event Horizon Telescope collaboration

New light particles and (time-evolving) black hole shadows

Superradiance: light boson cloud growth with $GmM_{\rm BH} \sim r_{\rm BH}/\lambda_c \sim \mathcal{O}(1)$ at the expense of BH mass/angular momentum

Roy, SV, Visinelli, in preparation

Superradiance evolution of black hole shadows revisited

Rittick Roy,^{1, *} Sumy Vagzord,^{2, *} and Loro Vishen^{0,4,4,5,1} ("cherker for Field Theory and Participated Types, Falsen University, 2003) Samples, Chans ³ Kerlö Indukte for Cosmology (ICCC) and Indukte of Advances, University of Cambridge, Indukte Theory Call 2014, Mark Kingdom ³ Bathat Neumada theory Neumana Call Science, Co. 11, 5 (1904), Fascul, Ruly ⁴ Constantion Associated Physics American (IGRAP), University of Cambridge, Indukted Science, Co. 11, 5 (1904), Fascul, Ruly ⁴ Constantion Associated Physics American (IGRAP), University of Lorisofted Call Science of Science and Astronomy, Sampla Jan Error Breiner, 2012 (Stang Samples, China Sampla Jan Error Breiner, 2012) (Stang Samples, China

- Consistent modelling in the presence of gas accretion and GW emission
- Change in shadow size $\sim O(1)\mu as$ potentially observable on human timescales [O(10) yr]

Rittick Roy

Luca Visinelli (INFN Frascati)

(Fudan)

Black hole shadows as standard rulers?

Concerns regarding the use of black hole shadows as standard rulers

Sunny Vagnozzi^{4,1} O, Cosimo Bambi² O and Luca Visinelli³ Published 25 March 2020 • O 2020 IOP Publishing Ltd Classical and Quantum Gravity, Volume 37, Number 8 Citation Sunny Vagnozzi et al 2020 Class, Quantum Grav. 37 087001

SV et al., CQG 37 (2020) 087001

Cosimo Bambi (Fudan)

$$lpha_{
m sh}(z)\simeq rac{3\sqrt{3}M}{D_A(z)}$$

Problems:

- Reliably determining M
- Model-dependence (beyond GR)
- Understand high-z SMBHs well?

Luca Visinelli (INFN Frascati)

Precession of celestial objects and new light particles

Precession from new light (gauged) mediators-induced fifth force

Tsai, SV, Visinelli, Wu, in preparation

Yu-Dai Tsai (Fermilab/KICP, Chicago)

Luca Visinelli (INFN Frascati)

Asteroid g - 2 Experiments: New Tests of Fifth Forces and Ultralight Dark Sector

Yu-Dai Tsai,^{1,2,*} Sunny Vagnozzi,^{3,†} Luca Visinelli,^{4,5,‡} and Youjia Wu^{6,§}

¹Firms National Accelerator Laboratory (Fermilab), Batesin, L. 60510, USA Kuch Institute for Cosmological Physics (RCP), University of Chicopo, Chicogo, L6 6057, USA ⁸Kuch Institute, for Cosmology (RCC), University of Cosmo, Chicogo, L6 6057, USA ⁸Kuch Institute, Johnston (Karosan, Carl, Sanghari San, Carl, Sanghari Sanghar, Chica ⁹Timey Dao Lee Institute (TDL), Sanghari Karo Tong University, 2021) Standard, Univ ⁹Cleneaber Cosmo for Theoretical (David-Lange Sanghari, Chica) ⁹Cleneaber Cosmo for theoretical (David-Lange Sanghari, Chica)</sup> ⁹Cleneaber Cosmo for theoretical (David-Lange Sangha

We propose the first study of utilizing asteroid dynamical data to probe long-range fifth forces. The stared data, including the processions, on the precisely determined based on radius and optical measurements. We specify the fifth force to have a Vakam-Ayre potential, mediated by wellenvirout ultradight consider. We found the essentivity wave in close to had ut out-in-balance the future superstart of the start of

- Celestial objects: asteroids, exoplanets, TNOs
- Competitive with torsion balance tests

Youjia Wu (Michigan)

Conclusions

- Direct detection of dark energy: huge unharvested potential and complementarity beyond laboratory searches and cosmological probes
- (Early- and late-time) Consistency tests of ACDM: early-time new physics *alone* most likely not enough to solve the Hubble tension
- Promising to probe new light particles (and dark energy?) with black hole shadows and precessions of celestial objects

Much to be learned about dark energy beyond "standard" cosmological searches for its gravitational interactions