Terrestrial, cosmological, and astrophysical direct detection of dark energy

Sunny Vagnozzi

Newton-Kavli Fellow @ KICC, University of Cambridge

⊠ sunny.vagnozzi@ast.cam.ac.uk

😭 www.sunnyvagnozzi.com

HEP Seminar, UCL, 11 February 2022







### Dark Energy

Searching for dark energy off the beaten track



- Part I: what is dark energy (DE)?
- Part II: terrestrial direct detection of (screened) DE
- Part III: cosmological and astrophysical direct detection of DE

Note: blue  $\rightarrow$  (Master's/PhD) students, red  $\rightarrow$  postdocs

Student's name (student's institution)



# Part I: What is dark energy?

#### How to measure the expansion rate of the Universe...

...and establish cosmic acceleration?

Always a good idea in cosmology: measure distances (to infer expansion rate)

Luminosity distance:

$$d_L(z) = (1+z) \frac{1}{H_0 \sqrt{\Omega_K}} \sinh \left[ H_0 \sqrt{\Omega_K} \int_0^z \frac{dz'}{H(z')} \right]$$

Angular diameter distance:

$$d_{A}(z) = \frac{1}{1+z} \frac{1}{H_0 \sqrt{\Omega_K}} \sinh \left[ H_0 \sqrt{\Omega_K} \int_0^z \frac{dz'}{H(z')} \right]$$

#### Standard candles and standard rulers

In practice "infer distances" = "measure fluxes or angles"

Fluxes:

Angles:

$$d_L = \sqrt{\frac{L}{4\pi f}}$$

L=intrinsic luminosity

$$d_A = \frac{x}{\theta}$$

x = intrinsic physical size

#### Standard candles and standard rulers



Credits: NASA/JPL-Caltech/R. Hurt (SSC)

#### Type Ia Supernovae as standard candles

SNela: white dwarf accretes matter from a companion star, exceeds the Chandrasekhar mass limit ( $\approx 1.4 M_{\odot}$ ), collapses, and explodes

- $\implies$  mass of exploding star highly predictable
- $\implies$  (peak) luminosity  $\approx 4\times 10^9 L_{\odot}$  highly predictable
- $\implies$  SNela are excellent standard(izable) candles



#### 1998: SNela indicate cosmic acceleration



Credits: Perlmutter, Physics Today 56 (2003) 53

#### Not only SNela: evidence for cosmic acceleration is sound

#### Evidence for cosmic acceleration does not only come from SNela

| Probe/Method                  | Strengths                                   | Weaknesses                                                  |
|-------------------------------|---------------------------------------------|-------------------------------------------------------------|
| Primary probes of dark energy |                                             |                                                             |
| SN Ia                         | Pure geometry, model-independent, mature    | Calibration, evolution, dust extinction                     |
| BAO                           | Pure geometry, low systematics              | Requires millions of spectra                                |
| CMB                           | Breaks degeneracy, precise, low systematics | Single distance only                                        |
| Weak lensing                  | Growth & geometry, no bias                  | measuring shapes, baryons, photo-z                          |
| Cluster counts                | Growth & geometry,                          | mass-observable,                                            |
|                               | X-ray, SZ, & optical                        | selection function                                          |
| Other probes of dark energy   |                                             |                                                             |
| Gal-gal lensing               | High S/N                                    | Bias, baryons                                               |
| Strong lensing                | Unique combination of distances             | Lens modeling, structure along los                          |
| RSD                           | Lots of modes, probes growth                | Theoretical modeling                                        |
| Peculiar velocities           | Probes growth, modified gravity             | Selection effects, need distances                           |
| Hubble constant               | Breaks degeneracy, model-independent        | distance ladder systematics                                 |
| Cosmic voids                  | Nearly linear, easy to find                 | galaxy tracer fidelity, consistent definition and selection |
| Shear peaks                   | Probes beyond 2-pt                          | Theoretical modeling versus projection                      |
| Galaxy ages                   | Sensitive to $H(z)$                         | Galaxy evolution, larger systematics                        |
| Standard sirens               | High z, absolute distance                   | Optical counterpart needed for redshift, lensing            |
| Redshift drift                | Clean interpretation                        | Tiny signal, huge telescope, stability                      |
| GRB & quasars                 | Very high z                                 | Standardizable?                                             |

#### What is driving cosmic acceleration?

Second Friedmann equation:

$$rac{\ddot{a}}{a}=-rac{4\pi G}{3}\left(
ho+3P
ight)\implies w=rac{P}{
ho}<-rac{1}{3}$$
 to get  $\ddot{a}>0$ 

Need to violate the strong energy condition!

"Simplest" solution to get negative pressure: vacuum energy  $\Lambda$ :

$$\frac{\ddot{a}}{a} = [...] + \frac{\Lambda}{3} \implies w_{\Lambda} = -1$$

Why is  $\Lambda \sim (\text{meV})^4$  rather than  $\sim (M_{\rm Pl})^4$ ? Cosmological constant problem/vacuum energy catastrophe!

#### What is driving cosmic acceleration?

Scalar fields can naturally produce negative pressure!

Next-to- "simplest" solution: single, minimally coupled scalar field ("quintessence")

$$\mathcal{L}_{\phi} = rac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - V(\phi) \implies P_{\phi} = rac{1}{2} \dot{\phi}^2 - V(\phi)$$

Equation of state:

$$w_{\phi}\equiv rac{P_{\phi}}{
ho_{\phi}}=rac{rac{1}{2}\dot{\phi}^2-V(\phi)}{rac{1}{2}\dot{\phi}^2+V(\phi)}\geq -1$$

#### The zoo of dark energy models



Credits: Tessa Baker

### The zoo of dark energy/modified gravity models



Ezquiaga & Zumalácarregui, Front. Astron. Space Sci. 5 (2018) 44

#### The beaten track

Gravitational signatures of DE: the effect of DE's energy density on the background expansion or the growth of structure, probed by standard cosmological observations, with particular focus on DE's equation of state  $w_{\rm DE} = P_{\rm DE}/\rho_{\rm DE} ~(\sim -1?)$ 



Credits: Perlmutter, Physics Today 56 (2003) 53

## Part II: Terrestrial direct detection of dark energy

### Are gravitational signatures all there is?



#### Can dark energy and visible matter talk to each other?

Quintessence and the Rest of the World: Suppressing Long-Range Interactions

Sean M. Carroll Phys. Rev. Lett. **81**, 3067 – Published 12 October 1998

If DE due to a new particle, this typically will:

- be very light  $[m \sim H_0 \sim \mathcal{O}(10^{-33})\,\mathrm{eV}]$
- have gravitational-strength coupling to matter

Result/immediate obstacle: long-range fifth forces!

$$F_5 \sim -rac{1}{M_5^2} rac{m_1 m_2}{r^2} e^{-r/\lambda_5} \,, \quad M_5 \sim M_{
m Pl} \,, \quad \lambda_5 \sim m^{-1} \sim H_0^{-1}$$

### Screening

How to satisfy fifth-force tests?

- Tune the coupling to be extremely weak  $[M \gg M_{
  m Pl}]$
- Tune the range to be extremely short  $[\lambda \ll \mathcal{O}(\mathrm{mm})]$
- Tune the dynamics so the force weakens based on its environment
   → screening!

(At least) 3 ways to screen

$$F_5 \sim -rac{1}{M_5^2({ imes})} rac{m_1 m_2}{r^{2-n({ imes})}} e^{-r/\lambda_5({ imes})}$$

- $\lambda_5(x) \rightarrow$  chameleon screening (short range in dense environments)
- $M_5(x) \rightarrow$  symmetron screening (weak coupling in dense environments)
- $n(x) \rightarrow Vainshtein$  (force drops faster than  $1/r^2$  around objects)

#### Chameleon screening

Fifth force range  $\lambda(x)$  becomes short in dense environments, scalar field minimizes effective potential determined by coupling to matter



#### Direct detection of dark energy

#### Can we detect (screened) DE in DM direct detection experiments?

PHYSICAL REVIEW D 104, 063023 (2021)

#### Direct detection of dark energy: The XENON1T excess and future prospects

Sunny Vagnozzio, 1,2,\*, Luca Visinellio, 3,4,5,†, Philippe Brax, 6,‡ Anne-Christine Davis, 7,1,8 and Jeremy Sakstein 8,1 <sup>1</sup>Kayli Institute for Cosmology (KICC). University of Cambridge, Madingley Road. Cambridge CB3 0HA, United Kingdom <sup>2</sup>Institute of Astronomy (IoA), University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom <sup>3</sup>Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, C.P. 13. I-100044 Frascati, Italy <sup>4</sup>Tsung-Dao Lee Institute (TDLI), Shanghai Jiao Tong University, 200240 Shanghai, China <sup>5</sup>Gravitation Astroparticle Physics Amsterdam (GRAPPA), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands <sup>6</sup>Institute de Physique Theórique (IPhT), Université Paris-Saclay, CNRS, CEA, F-91191, Gif-sur-Yvette Cedex, France <sup>7</sup>Department of Applied Mathematics and Theoretical Physics (DAMTP). Center for Mathematical Sciences, University of Cambridge, CB3 0WA, United Kingdom <sup>8</sup>Department of Physics & Astronomy, University of Hawai'i, Watanabe Hall, 2505 Correa Road, Honolulu, Hawaii, 96822, USA

(Received 7 April 2021; accepted 20 August 2021; published 15 September 2021)



Luca Visinelli (Shanghai)



Phil Brax (IPhT, Saclay)



Anne Davis (Cambridge)



Jeremy Sakstein (Hawaii)

### Direct detection of dark energy

Production



Production in strong magnetic fields of the tachocline



Detection



Analogous to photoelectric and axioelectric effects



### Direct detection of (chameleon-screened) dark energy



SV *et al.*, PRD 104 (2021) 063023 Image editing credits: Cristina Ghirardini To do: think about S2-only analysis?

# Part III: Cosmological and astrophysical direct detection of dark energy

#### Cosmological direct detection of dark energy

Wouldn't scattering between DE and baryons mess up cosmology?



# Do we have any hope of detecting scattering between dark energy and baryons through cosmology?

Sunny Vagnozzi<sup>0</sup>,<sup>1</sup>\*<sup>†</sup> Luca Visinelli,<sup>2</sup> Olga Mena<sup>3</sup> and David F. Mota<sup>4</sup>

<sup>1</sup>Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK <sup>2</sup>Gravitation Astroparticle Physics Amsterdam (GRAPPA), University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam, the Netherlands <sup>3</sup>Institute of Fisica Corpuscular (PIC), University of Valenciae CSC, E-46980 Valencia, Spain <sup>4</sup>Institute of Theoretical Astrophysics, University of Oslo, PO, Box 1029 Blindern, N-0315 Oslo, Norway

Accepted 2020 January 27. Received 2020 January 23; in original form 2019 December 3

#### Surprisingly not!



Luca Visinelli (Shanghai)



Olga Mena (Valencia)



David Mota (Oslo)

#### Cosmological direct detection of dark energy?

$$\dot{\theta}_{b} = -\mathcal{H}\theta_{b} + c_{s}^{2}k^{2}\delta_{b} + \frac{4\rho_{\gamma}}{3\rho_{b}}an_{e}\sigma_{T}(\theta_{\gamma} - \theta_{b}) + (1 + w_{x})\frac{\rho_{x}}{\rho_{b}}an_{e}\sigma_{xb}(\theta_{x} - \theta_{b})$$

$$\dot{\theta}_{x} = -\mathcal{H}(1 - 3c_{s}^{2})\theta_{x} + \frac{c_{s}^{2}k^{2}}{1 + w_{x}}\delta_{x} + an_{e}\sigma_{xb}(\theta_{b} - \theta_{x})$$

Impact on CMB and *linear* matter power spectrum ( $\alpha = \sigma_{xb}/\sigma_T$ )



SV et al., MNRAS 493 (2020) 1139

What about the non-linear regime?

# Cosmological direct detection of dark energy: non-linear structure formation signatures of dark energy scattering with visible matter

Fulvio Ferlito, <sup>1,2</sup>\* Sunny Vagnozzi, <sup>3</sup><sup>+</sup><sup>±</sup> David F. Mota<sup>4</sup> and Marco Baldi<sup>2,5,6</sup> <sup>1</sup>Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85740 Garching bei München, Germany <sup>1</sup>Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, Va Piero Gobetti 932, 1-40129 Bologna, Italy <sup>1</sup>Navi Institute Grosmolozy. <sup>1</sup>University of Cambridge, Madinglev Anada, Cambridge CB 014A. United Kinsdom

<sup>4</sup>Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo, Norway

<sup>5</sup>INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna. Via Piero Gobetti 93/3. I-40129 Bologna. Italy

6 INFN - Sezione di Bologna, viale Berti Pichat 6/2, I-40127 Bologna, Italy

#### Only one way to find out: run N-body simulations!



Fulvio Ferlito (MPA Garching)



Marco Baldi (Bologna)



David Mota (Oslo)

Baryon power spectrum relative to  $\Lambda$ CDM (left) and no-scattering wCDM (right)

Matter power spectrum relative to  $\Lambda$ CDM (left) and no-scattering wCDM (right)



Ferlito, SV, Mota, Baldi, arXiv:2201.04528 (submitted to MNRAS)

Simulation snapshots:

- $\sigma = 100 \sigma_T$
- w = -0.9, -1, -1.1

Ferlito, SV, Mota, Baldi, arXiv:2201.04528 (submitted to MNRAS)





Other observables:

- (Cumulative) halo mass function
- (Stacked) halo density profiles
- Baryon fraction profiles
- Future work: Bullet-like systems, higher-order correlators, galaxy bias





Baryon profiles most promising observable to probe DE-baryon scattering

### Conclusions

Terrestrial direct detection of dark energy



SV et al., PRD 104 (2021) 063023

Cosmological and astrophysical direct detection of dark energy



Ferlito, SV, Mota, Baldi, arXiv:2201.04528

Much to be learned about dark energy beyond "standard" cosmological searches for its gravitational interactions