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Dark Energy

Searching for dark energy off the beaten track

Part I: what is dark energy (DE)?

Part II: terrestrial direct detection of
(screened) DE

Part III: cosmological and
astrophysical direct detection of DE

Note: blue → (Master’s/PhD) students, red → postdocs
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Part I:
What is dark energy?
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How to measure the expansion rate of the Universe...

...and establish cosmic acceleration?

Always a good idea in cosmology: measure distances (to infer expansion
rate)

Luminosity distance:
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Standard candles and standard rulers

In practice “infer distances” = “measure fluxes or angles”

Fluxes:

dL =

√
L

4πf

L=intrinsic luminosity

Angles:

dA =
x

θ

x=intrinsic physical size
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Standard candles and standard rulers

Credits: NASA/JPL-Caltech/R. Hurt (SSC)
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Type Ia Supernovae as standard candles

SNeIa: white dwarf accretes matter from a companion star, exceeds the
Chandrasekhar mass limit (≈ 1.4M�), collapses, and explodes

=⇒ mass of exploding star highly
predictable

=⇒ (peak) luminosity ≈ 4× 109L�
highly predictable

=⇒ SNeIa are excellent
standard(izable) candles

Credits: phys.org
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1998: SNeIa indicate cosmic acceleration

Credits: Perlmutter, Physics Today 56 (2003) 53
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Not only SNeIa: evidence for cosmic acceleration is sound

Evidence for cosmic acceleration does not only come from SNeIa

Huterer & Shafer, Rept. Prog. Phys. 81 (2018) 016901
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What is driving cosmic acceleration?

Second Friedmann equation:

ä

a
= −4πG

3
(ρ+ 3P) =⇒ w =

P

ρ
< −1

3
to get ä > 0

Need to violate the strong energy condition!

“Simplest” solution to get negative pressure: vacuum energy Λ:

ä

a
= [...] +

Λ

3
=⇒ wΛ = −1

Why is Λ ∼ (meV)4 rather than ∼ (MPl)
4? Cosmological constant

problem/vacuum energy catastrophe!
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What is driving cosmic acceleration?

Scalar fields can naturally produce negative pressure!

Next-to-“simplest” solution: single, minimally coupled scalar field
(“quintessence”)

Lφ =
1

2
∂µφ∂µφ− V (φ) =⇒ Pφ =

1

2
φ̇2 − V (φ)

Equation of state:

wφ ≡
Pφ
ρφ

=
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
≥ −1
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The zoo of dark energy models

Credits: Tessa Baker
12 / 30



The zoo of dark energy/modified gravity models

Ezquiaga & Zumalácarregui, Front. Astron. Space Sci. 5 (2018) 44
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The beaten track

Gravitational signatures of DE: the effect of DE’s energy density on the
background expansion or the growth of structure, probed by standard
cosmological observations, with particular focus on DE’s equation of state
wDE = PDE/ρDE (∼ −1?)

Credits: Perlmutter, Physics Today 56 (2003) 53
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eBOSS collaboration, PRD 103 (2021) 083533
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Part II:
Terrestrial direct detection of dark energy
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Are gravitational signatures all there is?

Credits: (adapted from) Matt Buckley

What about dark energy?
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Can dark energy and visible matter talk to each other?

If DE due to a new particle, this typically will:

be very light [m ∼ H0 ∼ O(10−33) eV]

have gravitational-strength coupling to matter

Result/immediate obstacle: long-range fifth forces!

F5 ∼ −
1

M2
5

m1m2

r2
e−r/λ5 , M5 ∼ MPl , λ5 ∼ m−1 ∼ H−1

0
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Screening

How to satisfy fifth-force tests?

Tune the coupling to be extremely weak [M � MPl]

Tune the range to be extremely short [λ� O(mm)]

Tune the dynamics so the force weakens based on its environment
−→ screening!

(At least) 3 ways to screen

F5 ∼ −
1

M2
5 (x)

m1m2

r2−n(x)
e−r/λ5(x)

λ5(x)→ chameleon screening (short range in dense environments)

M5(x)→ symmetron screening (weak coupling in dense environments)

n(x)→ Vainshtein (force drops faster than 1/r2 around objects)
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Chameleon screening

Fifth force range λ(x) becomes short in dense environments, scalar field
minimizes effective potential determined by coupling to matter

Veff = V (φ) + φρm/M

m2
eff =

d2Veff

dφ2
|φ=φmin

∝ ρn , n > 0

λ ∼ 1/meff ∝ ρ−n/2

Credits: Ben Elder
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Direct detection of dark energy

Can we detect (screened) DE in DM direct detection experiments?

Luca Visinelli (Shanghai) Phil Brax (IPhT, Saclay) Anne Davis (Cambridge) Jeremy Sakstein (Hawaii)
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Direct detection of dark energy

Production

Lφγ ⊃ −βγ
φ

MPl
FµνF

µν︸ ︷︷ ︸
(anomalous)

+
Tµν
γ ∂µφ∂νφ

M4
γ︸ ︷︷ ︸

disformal

Production in strong magnetic fields
of the tachocline

Detection

Lφi ⊃ βi
φTi

MPl︸ ︷︷ ︸
conformal

− ci
∂µφ∂µφ

M4
Ti︸ ︷︷ ︸

kinetic-conformal

+
Tµν
i ∂µφ∂νφ

M4
i︸ ︷︷ ︸

disformal

Analogous to photoelectric and
axioelectric effects
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Direct detection of (chameleon-screened) dark energy

SV et al., PRD 104 (2021) 063023 Image editing credits: Cristina Ghirardini

To do: think about S2-only analysis?
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Part III:
Cosmological and astrophysical
direct detection of dark energy

23 / 30



Cosmological direct detection of dark energy

Wouldn’t scattering between DE and baryons mess up cosmology?

Surprisingly not!

Luca Visinelli (Shanghai) Olga Mena (Valencia) David Mota (Oslo)
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Cosmological direct detection of dark energy?

θ̇b = −Hθb + c2
s k

2δb +
4ργ

3ρb
aneσT (θγ − θb)+(1 + wx )

ρx

ρb
aneσxb(θx − θb)

θ̇x = −H(1− 3c2
s )θx +

c2
s k

2

1 + wx
δx + aneσxb(θb − θx )

Impact on CMB and linear matter power spectrum (α = σxb/σT )
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SV et al., MNRAS 493 (2020) 1139

25 / 30



N-body simulations of DE-baryon scattering

What about the non-linear regime?

Only one way to find out: run N-body simulations!

Fulvio Ferlito (MPA Garching) Marco Baldi (Bologna) David Mota (Oslo)
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N-body simulations of DE-baryon scattering

Baryon power spectrum relative to
ΛCDM (left) and no-scattering
wCDM (right)
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Matter power spectrum relative to
ΛCDM (left) and no-scattering
wCDM (right)
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Ferlito, SV, Mota, Baldi, arXiv:2201.04528 (submitted to MNRAS)
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N-body simulations of DE-baryon scattering

Simulation snapshots:

σ = 100σT

w = −0.9,−1,−1.1

Ferlito, SV, Mota, Baldi, arXiv:2201.04528 (submitted to

MNRAS)
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N-body simulations of DE-baryon scattering

Other observables:

(Cumulative) halo mass function

(Stacked) halo density profiles

Baryon fraction profiles

Future work: Bullet-like
systems, higher-order
correlators, galaxy bias 10−1 100
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Ferlito, SV, Mota, Baldi, arXiv:2201.04528 (submitted to

MNRAS)

Baryon profiles most promising observable to probe DE-baryon scattering
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Conclusions

Terrestrial direct detection of dark
energy

SV et al., PRD 104 (2021) 063023

Cosmological and astrophysical direct
detection of dark energy

Ferlito, SV, Mota, Baldi, arXiv:2201.04528

Much to be learned about dark energy beyond “standard”
cosmological searches for its gravitational interactions
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