The trouble with Hubble

Sunny Vagnozzi

Newton-Kavli Fellow @ University of Cambridge

Sunny.vagnozzi@ast.cam.ac.uk

Sunnyvagnozzi

🔂 www.sunnyvagnozzi.com

🍠 @SunnyVagnozzi

VIA Lecture, Virtual Institute of Astroparticle Physics 17 July 2020

Main take-home messages

- H₀ tension is **not** just a matter of CMB vs Riess *et al.* value...
- ...but of inverse distance ladder vs several low-z H_0 measurements
- Solution could be early Universe new physics lowering sound horizon...
- ...but other solutions (including late-time ones) are not excluded yet!
- H_0 tension is **very hard** to solve, we do not yet have a solution

 H_0 : current rate of expansion of the Universe

Why care about H_0 ?

- Allan Sandage, 1970: "Cosmology can be described as the search for two numbers: the current rate of expansion [H₀] and the deceleration of the expansion [q₀]"
- Adam Riess, 2019: "H₀ is the ultimate end-to-end test for ΛCDM "

H_0 as an end-to-end test

The trouble

Adapted from Wong et al., arXiv:1907.04869 (to appear in MNRAS), and Silvia Galli

The trouble

How to measure H_0 ?

Always a good idea in cosmology: measure distances to measure the expansion rate

Luminosity distance:

$$d_{L}(z) = (1+z)\frac{1}{H_{0}\sqrt{\Omega_{K}}} \sinh\left[H_{0}\sqrt{\Omega_{K}}\int_{0}^{z}\frac{dz'}{H(z')}\right]$$

Angular diameter distance (more of interest to us):

$$d_{A}(z) = \frac{1}{1+z} \frac{1}{H_{0}\sqrt{\Omega_{K}}} \sinh \left[H_{0}\sqrt{\Omega_{K}} \int_{0}^{z} \frac{dz'}{H(z')}\right]$$

Standard candles and standard rulers

In practice "infer distances" = "measure fluxes or angles"

Fluxes:

$$d_L = \sqrt{\frac{L}{4\pi f}}$$

Angles (more of interest to us):

 $d_A = \frac{s}{\theta}$

L=intrinsic luminosity

s=intrinsic physical size

Standard candles and standard rulers

Credits: NASA/JPL-Caltech/R. Hurt (SSC)

The CMB as a (self-calibrated) standard ruler

The CMB as a (self-calibrated) standard ruler

Steps: See e.g. Knox & Millea's Hubble Hunter's Guide, PRD 101 (2020) 043533

- Infer ω_b from even/odd peak height modulation
- Infer ω_m from "potential envelope" effect (early ISW effect)
- Calculate $r_s^\star \sim \int_{z_\star}^\infty dz \, c_s(z,\omega_b)/\sqrt{\omega_m(1+z)^3+\omega_r(1+z)^4}$
- Measure $heta_s \sim \pi/\Delta \ell$ from peak spacing
- With r_s^\star and θ_s known, infer $D_A^\star = r_s^\star/ heta_s$
- Adjust ω_{Λ} to match inferred $D_{A}^{\star} \sim \int_{0}^{z_{\star}} dz / \sqrt{\omega_{m}(1+z)^{3} + \omega_{\Lambda}}$
- Now H(z) is completely specified, so infer $H_0!$

Applying the ruler

Units of H_0 always implicitly $\mathrm{km\,s^{-1}\,Mpc^{-1}}$ from now

Last-minute news: just confirmed by ACT! ACT collaboration, arXiv:2007.07288

 $H_0 = 67.9 \pm 1.5$ (ACT DR4)

The geometrical degeneracy

The real world is not so simple:

$$\ell_{\rm peak} \propto \omega_m^{-0.15} h^{-0.2} \implies \omega_m h^{1.3} \approx {\rm const}$$

Need some other probe to break this degeneracy to get a more reliable measurement of H_0 (especially in models beyond Λ CDM!)

The role of BAO

Try to measure the same sound horizon feature at different redshifts:

$$\theta_{\rm BAO} \sim \frac{r_s^{\star}}{D_A(z_{\rm BAO})} \propto \frac{\int_{z_{\star}}^{\infty} dz \, c_s(z,\omega_b) / \sqrt{\omega_m (1+z)^3 + \omega_r (1+z)^4}}{\int_0^{z_{\rm BAO}} dz / \sqrt{\omega_m (1+z)^3 + \omega_\Lambda}}$$

Credits: Eric Huff and the BOSS/SPT collaborations Note: not really r_s^{\star} but r_s^{drag} , difference irrelevant for the discussion

The role of BAO

- BAO measures a combination of Ω_m and H_0r_s
- Measuring BAO at different redshifts and in parallel/perpendicular directions helps break ω_m - H_0 geometrical degeneracy
- BAO need to be **calibrated** either with prior on r_s (e.g. from CMB)...
- ...or equivalently on ω_b (e.g. from CMB or BBN)...
- ...or with a prior on H_0 (then you infer r_s)
- With r_s calibration can measure H_0 , still in the high 60s, e.g.:
 - (Gal+Lylpha) BAO+BBN: $H_0=67.0\pm1.2$ Addison *et al.*, ApJ 853 (2018) 119
 - Gal BAO+DES+BBN: $H_0=67.4\pm1.1$ DES collaboration, MNRAS 480 (2018) 3879
 - Gal BAO+BBN+SNe+ θ_s prior: $H_0 = 67.9 \pm 0.8$ Planck collaboration, arXiv:1807.06209
 - (Gal+Ly α) BAO+BBN+voids: $H_0=69.0\pm1.2$ Nadathur et al., PRL 124 (2020) 221301

Good agreement between BAO and Planck

Other late-time guard rails

Uncalibrated high-z SNela: constrain slope of H(z)

Cosmic chronometers: constrain absolute scale of H(z)

Credits: Scolnic et al., ApJ 859 (2018) 101

Credits: Moresco et al., JCAP 1612 (2016) 039

Combining CMB and late-time guard rails

$H_0 = 67.72 \pm 0.40$ (CMB+BAO+uncalibrated SNela)

The trouble

Adapted from Wong et al., arXiv:1907.04869 (to appear in MNRAS), and Silvia Galli

Calibrating the local distance ladder with Cepheids

3-rung distance ladder Adapted from Adam Riess and Silvia Galli

Calibrating the local distance ladder with Cepheids

SH0ES team: 5 distance anchors, 19 calibrator SNeIa, \sim 300 SNeIa at $z<0.15\rightarrow1.9\%$ measurement of $H_0!$ Riess et al., ApJ 876 (2019) 85

$H_0 = 74.03 \pm 1.42$ (Cepheid-calibrated SNela)

compare against

$H_0 = 67.72 \pm 0.40$ (CMB+BAO+uncalibrated SNela)

Almost 5σ tension!

The trouble

Adapted from Wong et al., arXiv:1907.04869 (to appear in MNRAS), and Silvia Galli

Calibrating the local distance ladder with the TRGB

Replace second rung of distance ladder using Tip of the Red Giant Branch (TRGB) as distance indicator instead of Cepheids

Calibrating the local distance ladder with the TRGB

Replace second rung of distance ladder using Tip of the Red Giant Branch (TRGB) as distance indicator instead of Cepheids Freedman *et al.*, ApJ 882 (2019) 34

Criticisms on overestimated extinction raised in Yuan et al., ApJ 886 (2019) 61; addressed in Freedman et al., ApJ 891 (2020) 57

The trouble

Adapted from Wong et al., arXiv:1907.04869 (to appear in MNRAS), and Silvia Galli

Strong lensing time delays

Arrival time of each of the multiple images of quasars depends on different distances travelled, and hence H_0

Credits: NASA and ESA

Credits: NASA and ESA

Strong lensing time delays

HOLICOW collaboration: Wong et al., arXiv:1907.04869 (to appear in MNRAS)

$$H_0 = 73.3^{+1.7}_{-1.8}$$
 (H0LiCOW, 6 lensed quasars)

The trouble

Adapted from Wong et al., arXiv:1907.04869 (to appear in MNRAS), and Silvia Galli

Issues with H0LiCOW?

Unknown lens density profile (mass-sheet degeneracy)? Blum et al., ApJ 892 (2020) L27

Joint H0LiCOW-SLACS analysis with a Bayesian hierarchical model:

73.3 ^{+1.7} of PL and NFW + st 74.0 ^{+1.7} 1.8 NO (NFW + stars/or 74.2 ^{+1.6} 74.2 ^{+1.6} TDCOSMO (power	tars/constant M/L)
74.0 ^{+1.7} 74.0 ^{+1.7} 1.8 40 (NFW + stars/cr 74.2 ^{+1.6} 74.2 ^{+1.6} TDCOSMO (power	onstant M/L)
74.0 ^{+1.7} NO (NFW + stars/cr 74.2 ^{+1.6} TDCOSMO (power	onstant M/L)
74.0 ^{+1.7} MO (NFW + stars/cr 74.2 ^{+1.6} TDCOSMO (power	onstant M/L)
10 (NFW + stars/or 74.2+1.6 TDCOSMO (power	onstant M/L)
74.2-1.6 TDCOSMO (power	5
TDCO5MO (power	
	r-law)
on mass prof	ile
74.5	.1
TDCOSMO-0	inly
73.3+5.8	
isotropy constraint	s from 9 SLACS lenses)
-	
iLACS lenses)	
, aints from SLACS)	
75	00
	74.5+5 TDCOSMO-C 73.3+5.8 sotropy constraint SLACS lenses) aints from SLACS)

Credits: Birrer et al., arXiv:2007.02941

A curious trend

New physics or systematics? What could this mean?

Wong et al., arXiv:1907.04869 (to appear in MNRAS)

Other late-time measurements

List most certainly not exhaustive (but all in the low 70s):

- Mira variables as SNeIa calibrators: $H_0 \sim 73 \pm 4$ Huang et al., ApJ 857 (2018) 67
- Surface brightness fluctuations: $H_0 \sim 77 \pm 4$ Jensen et al., ApJ 550 (2001) 503
- Water megamasers (single rung): $H_0 \sim 73 \pm 4$ Pesce et al., ApJ 891 (2020) L1
- Revisiting Cepheid-calibrated SNela: many examples with H₀ anywhere between 70 and 74 e.g. Efstathiou, MNRAS 440 (2014) 1138; Cardona *et al.*, JCAP 1703 (2017) 056; Zhang *et al.*, MNRAS 471 (2017) 2254; Feeney *et al.*, MNRAS 476 (2017) 3861; Dhawan *et al.*, A& A 609 (2018) A72; Follin & Knox, MNRAS 477 (2017) 4534; and many others
- AGN variability: $H_0 \sim 73 \pm 6$ Hodgson et al., MNRAS 495 (2020) L27
- Black hole shadows: ${\it H}_0 \sim 70 \pm 9$ Qi & Zhang, Chin. Phys. C 44 (2020) 055101
- ...and many other examples!

The trouble

What can solve this?

Adapted from Wong et al., arXiv:1907.04869 (to appear in MNRAS), and Silvia Galli

A naïve approach: look at CMB data only

New physics such that higher H_0 required to keep $\theta_s = r_s^\star/D_A^\star$ fixed

Early-Universe new physics

Prototype: extra relativistic degrees of freedom ($N_{\rm eff} > 3.046$) raise pre-recombination expansion rate

Late-Universe new physics

Prototype: phantom dark energy (w < -1) raises post-recombination expansion rate

A naïve approach: look at CMB data only

Most extensions just reduce the tension by enlarging error bars. No simple extension of Λ CDM where H_0 is high from CMB data alone (in most cases H_0 actually becomes lower)!

Table 5. Constraints on standard cosmological parameters from *Planck* TT.TE.EF.+lowE-lensing when the base-ACDM model is extended by varying additional parameters. The constraint on τ is also stable but not shown for hevity: however, we include H_0 (in km s⁻¹Mpc⁻¹) as a derived parameter (which is very poorly constrained from *Planck* alone in the ACDM+w₀ extension). Here a_{-1} is a matter isocurvature amplitude parameter, following PCP15. All limits are 68 % in this table. The results assume standard BBN except when varying Y_1 independently (which requires non-standard BBN). Varying A_1 is not a physical model (see Sect. 6.2).

Parameter(s)	$\Omega_{\rm b}h^2$	$\Omega_c h^2$	$100\theta_{MC}$	H_0	ns	$\ln(10^{10}A_s)$
Base ACDM	0.02237 ± 0.00015	0.1200 ± 0.0012	1.04092 ± 0.00031	67.36 ± 0.54	0.9649 ± 0.0042	3.044 ± 0.014
r	0.02237 ± 0.00014	0.1199 ± 0.0012	1.04092 ± 0.00031	67.40 ± 0.54	0.9659 ± 0.0041	3.044 ± 0.014
$dn_s/d \ln k \dots$	0.02240 ± 0.00015	0.1200 ± 0.0012	1.04092 ± 0.00031	67.36 ± 0.53	0.9641 ± 0.0044	3.047 ± 0.015
$dn_s/d\ln k, r$	0.02243 ± 0.00015	0.1199 ± 0.0012	1.04093 ± 0.00030	67.44 ± 0.54	0.9647 ± 0.0044	3.049 ± 0.015
$d^2n_k/d\ln k^2$, $dn_k/d\ln k$.	0.02237 ± 0.00016	0.1202 ± 0.0012	1.04090 ± 0.00030	67.28 ± 0.56	0.9625 ± 0.0048	3.049 ± 0.015
Not	0.02224 ± 0.00022	0.1179 ± 0.0028	1.04116 ± 0.00043	66.3 ± 1.4	0.9589 ± 0.0084	3.036 ± 0.017
N_{eff} , $dn_s/d\ln k$	0.02216 ± 0.00022	0.1157 ± 0.0032	1.04144 ± 0.00048	65.2 ± 1.6	0.950 ± 0.011	3.034 ± 0.017
Σm_{ν}	0.02236 ± 0.00015	0.1201 ± 0.0013	1.04088 ± 0.00032	67.1+12	0.9647 ± 0.0043	3.046 ± 0.015
$\Sigma m_{\rm v}, N_{\rm eff}$	0.02221 ± 0.00022	0.1179+0.0027	1.04116 ± 0.00044	65.9+1.8	0.9582 ± 0.0086	3.037 ± 0.017
m ^{eff}	0.02242+0.00014	$0.1200^{+0.0032}_{-0.0020}$	1.04074+0.00033	67.11+0.63	0.9652+0.0045	3.050+0.014
α_1	0.02238 ± 0.00015	0.1201 ± 0.0015	1.04087 ± 0.00043	67.30 ± 0.67	0.9645 ± 0.0061	3.045 ± 0.014
W0	0.02243 ± 0.00015	0.1193 ± 0.0012	1.04099 ± 0.00031		0.9666 ± 0.0041	3.038 ± 0.014
Ω_{K}	0.02249 ± 0.00016	0.1185 ± 0.0015	1.04107 ± 0.00032	63.6+2.1	0.9688 ± 0.0047	3.030+0.017
Y _P	0.02230 ± 0.00020	0.1201 ± 0.0012	1.04067 ± 0.00055	67.19 ± 0.63	0.9621 ± 0.0070	3.042 ± 0.016
Y _P , N _{eff}	0.02224 ± 0.00022	0.1171+0.0042	1.0415 ± 0.0012	66.0+1.7	0.9589 ± 0.0085	3.036 ± 0.018
A _L	0.02251 ± 0.00017	0.1182 ± 0.0015	1.04110 ± 0.00032	68.16 ± 0.70	0.9696 ± 0.0048	3.029+0.018 -0.016

Inverse distance ladder: CMB-independent inferences of H_0

Construct an *inverse distance ladder* from BAO+uncalibrated high-*z* SNela earlier examples in e.g. Aubourg *et al.*, PRD 92 (2015) 123516; Bernal *et al.*, JCAP 1610 (2016) 019

BAO constrain $H_0 r_s$: anchor $r_s \rightarrow$ infer H_0 ; anchor $H_0 \rightarrow$ infer r_s

Credits: Feeney et al., PRL 122 (2019) 061105

Credits: Lemos et al., MNRAS 483 (2019) 4803

The H_0 tension as a sound horizon tension

Instructive to look at the r_s - H_0 plane (remember BAO constrain H_0r_s)

Credits: Knox & Millea's "Hubble Hunter's Guide", PRD 101 (2020) 043533

Focusing on H_0 rather than r_s seems to obscure the real story?

The H_0 tension as a sound horizon tension

Solving the H_0/r_s tension would seem to require lowering r_s by $\approx 7\%$ from 147 $\rm Mpc$ to $\sim 136\,\rm Mpc$

Credits: Knox & Millea's "Hubble Hunter's Guide", PRD 101 (2020) 043533

This seems to require new physics operating just before recombination!

Solutions to the H_0 tension

What should a good solution to the H_0 tension do?

- Raise the central value of H_0 noticeably without using SH0ES prior
- Leave θ_s (mostly) untouched
- Leave θ_d (mostly) untouched
- Fit a wide range of datasets (CMB, BAO, SNela, LSS,...)
- Possibly explain other conundra (σ_8 tension? A_{lens} internal tension?)
- Come from a compelling particle/gravity model
- Optional (but not so much): make verifiable predictions...
- ...which later better be verified!

Broad classification of solutions

The good, the bad, and the unlikely

From Knox & Millea's "Hubble Hunter's Guide", PRD 101 (2020) 043533

		disfavored
		highly
	Categories of Solution	disfavored Holicow disfavored
	Post-recombination	Pre-recombination
High $r_{\rm s}$	 H(z) wiggles Late-Time photon interactions New physics impacting (some) Cepheids 	
Low $r_{\rm s}$	 Confusion sowing Post-recombination evolution of BAO feature 	 Confusion sowing Sound speed roduction Reduction of conformal time to recombination

A promising class of solutions: early dark energy

- Scalar field behaving as a cosmological constant just before recombination, then diluting faster than matter
- Many examples in the literature, including particle models Poulin et al., PRL 122 (2019) 221301; Agrawal et al., arXiv:1904.01016; Lin et al., PRD 100 (2019) 063542; Niedermann & Sloth, arXiv:1910.10739; Sakstein & Trodden, PRL 124 (2020) 161301; Zumalacárregui, arXiv:2003.06396; and many others

A promising class of solutions: early dark energy

Example: scalar field initially slow-rolls (Hubble friction), then dilutes faster than matter Poulin *et al.*, PRD 98 (2018) 083525; Poulin *et al.*, PRL 122 (2019) 221301

$$V_n(\phi) \propto (1 - \cos \phi)^n \,, \quad \ddot{\phi} + 3H\dot{\phi} + rac{dV_n(\phi)}{d\phi} = 0$$

The difficulties faced by early-time solutions

Generally anything which affects r_s affects damping scale r_d as well!

Credits: Knox & Millea's "Hubble Hunter's Guide", PRD 101 (2020) 043533

Hard to lower r_s with θ_s/θ_d fixed; excludes the simplest $N_{\rm eff}$ solution (might be saved by exotic neutrino interactions?) Kreisch *et al.*, PRD 101 (2020) 123505

A general feature of early-time solutions?

Residuals driving ℓ -dependent inferences of ω_m Knox & Millea, PRD 101 (2020) 043533

Are seeing already seeing hints? Relation to *Planck* A_{lens} internal tension? See also Addison *et al.*, ApJ 818 (2016) 132

SPT collaboration, ApJ 850 (2017) 101

The difficulties faced by early-time solutions

Problems with early dark energy: Hill et al., arXiv:2003.07355

- At odds with LSS probes (RSD, DES weak lensing, BOSS full-shape power spectrum) due to higher value of Ω_c required to fit *Planck* data
- Not preferred by *Planck* data alone
- Most (if not all) particle physics models extremely fine-tuned
- Inclusion of SH0ES prior in analysis is questionable
- At most brings tension down to $pprox 2.5\sigma$ level

Late-time transitions?

Credits: Marius Millea

Because uncalibrated SNeIa don't allow a high enough slope, and even considering a very late ($z \ll 0.01$) transition doesn't really resolve the source of the tension Benevento *et al.*, PRD 101 (2020) 103517

The difficulties in solving the Hubble tension

- Very hard to fit all available precision cosmological data
- Fixing problems produces new problems elsewhere (Whac-a-mole!)
- Use of SH0ES prior in many analyses is questionable
- In most cases central value of *H*₀ remains quite low, tension relaxed mostly because of larger uncertainties
- Can at most bring tension to $\approx 2.5-3\sigma$ level, where it might be considered a statistical fluctuation

An alternative point of view?

What happens if a theory is able to fix beyond- Λ CDM parameters to specific non-standard values?

Example: suppose a particle physics model *predicts* a specific value for $N_{\rm eff}$

For H_0 coming from CMB+BAO+SNela (circa 2018):

 $\Delta H_0 \approx 6.2 \Delta N_{\rm eff}$

Vagnozzi, PRD 102 (2020) 023518

An alternative point of view?

Some well-motivated particle models *predict* specific values of $N_{
m eff}$

Vagnozzi, PRD 102 (2020) 023518

Conclusions

- Cosmology at crossroads: ACDM failing its end-to-end test?
- H₀ tension is **not** just a matter of CMB vs Riess *et al.* value...
- ...but of inverse distance ladder (CMB+BAO+uncalibrated SNela) vs several low-z H₀ measurements (including H0LiCOW)
- Solution could be early Universe new physics lowering sound horizon...
- ...but other solutions (including late-time ones) are not excluded yet!
- H_0 tension is **very hard** to solve, we do not yet have a solution
- Lots of relevant data coming in the next years: the H₀ tension makes this an exciting time to be working on cosmology!

Conclusions

