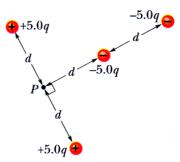

Last updated: 24/12/2019

Electric Field

1. Consider an acrylic rod and a pith ball carrying a charge q_{test} of the same sign as the charge on the rod.

The pith ball is moved to different locations "x" in the diagram.



- a. Sketch *vectors* at each of the marked points to represent the electrostatic force centred on the ball at that location.
- b. How does the magnitude of the force exerted on the ball at point *A* compare to the magnitude of the force on the ball at point *B*?
- c. Suppose that the charge, q_{test} on the pith ball is halved. Would the electrostatic force centred on the ball at each location change? If so, how? If not, explain why not.
- d. Would the magnitude or direction of the electric field at point *A* change if:
 - The charge on the *rod* is increased? Explain.
 - The magnitude of the test charge is increased? Explain.
 - The sign of the test charge is changed? Explain.

Voltage (electric potential)

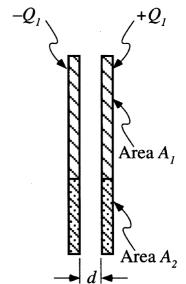
Short calculations

- 2. In a lightning flash, the voltage difference between a cloud and the ground is $1.0 \times 10^9 \, \text{V}$ and $30 \, \text{C}$ of charge is transferred.
 - a) What is the change in energy of that charge?
 - b) Is the change an increase or decrease?
 - c) If all that energy could be used to accelerate a 70 kg human from rest, what would be the person's final speed?
 - d) If the energy could be used to melt ice, how much ice (initially at 0° C) would it melt? (To melt ice at 0° C requires 3.33×10^{5} J/kg).
- 3. An electron is accelerated along an electric field a distance of 50cm. The field does $4.8 \times 10^{-15} \, \text{J}$ of work on the electron. Assume the field is uniform.
 - a) What is the voltage difference between initial and final positions?
 - b) What is the electric field strength?
 - c) What is the force on the electron initially, and at the final position?
- 4. From the figure at right, what is the voltage at point P due to the four point charges, if V = 0 at infinity?

Capacitors

- 5. Consider a simple parallel-plate capacitor with plates separated by a distance d, given equal and opposite charges. Suppose the plates are pulled apart until they are separated by a distance
 - D>d . The electrostatic energy stored in the capacitor is
 - a. greater than
 - b. the same as
 - c. smaller than

before the plates were pulled apart?


6. Two plates with area A_1 are held a distance d apart and have net charges Q_1 and Q_1 . Assume that all the charge is uniformly distributed on the inner surfaces of the plates.

Discuss: why should the charge be on the inner surfaces only?

a. Write an expression for the capacitance in terms of A_1 and d.

Two initially uncharged plates of surface area A_2 are then attached to the original plates as shown.

- b. Find the voltage difference between the plates. Explain (group discussion).
- c. The right plate is moved further to the right, increasing the separation to *D*. Describe how each of the following quantities will change (if at all).
 - i. The charge density on each plate
 - ii. The electric field both outside and between the plates
 - iii. The potential difference between the plates.

