Seven hints that early-time new physics alone is not sufficient to solve the Hubble tension

Sunny Vagnozzi

Department of Physics, University of Trento Trento Institute for Fundamental Physics (TIFPA)-INFN

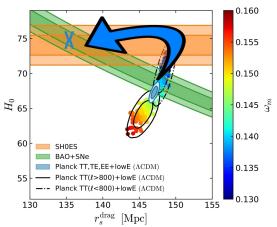
≤ sunny.vagnozzi@unitn.it

www.sunnyvagnozzi.com

CosmoVerse seminar, 11 January 2024

The trouble

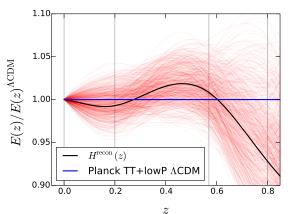
Overall trend:


- "early-time" model-dependent measurements prefer low H₀
- "late-time" direct measurements prefer high H₀

Review by Di Valentino et al., CQG 38 (2021) 153001

Hubble tension "no-go theorem"

Solving the tension while providing a good fit to BAO data and Hubble flow SNeIa data seems to require lowering r_s by $\approx 7\%$



Knox & Millea, PRD 101 (2020) 043533

This would seem to require early-time (pre-recombination) new physics!

Hubble tension "no-go theorem"

Late-time guard rails: BAO and Hubble flow SNela are very unforgiving!

Bernal, Verde & Riess, JCAP 1610 (2016) 019

Hubble tension "no-go theorem"?

...yet, we still haven't been able to construct a model truly fixing H_0 (empirically, early-Universe new physics only seems to get to $H_0 \sim 70$ – with Planck CMB data and without including local H_0 priors)

Is early-time new physics the end of the story?

My sociological worry: "the Hubble tension calls for early-time new physics" may have been uncritically elevated to the mantra "the Hubble tension calls **exclusively** for early-time new physics"

Seven hints

- Ages of the oldest astrophysical objects
- Baryon Acoustic Oscillations r_d-H₀ degeneracy slope
- Cosmic chronometers
- ullet Descending trends observed in a wide range of low-z datasets
- $m{arepsilon}$ Early integrated Sachs-Wolfe effect and its restrictions on early-time new physics
- ullet Fractional matter density (Ω_m) constraints from uncalibrated cosmic standards
- ullet Galaxy power spectrum r_d and $k_{
 m eq}$ -based determinations of H_0

Why seven? (Why not?) Miller's law – see Miller, Psychol. Rev. 63 (1956) 81

Ovinion

Seven Hints that Early-Time New Physics Alone Is Not Sufficient to Solve the Hubble Tension

Sunny Vagnozzi 1,200

Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo, TN, Italy;

Istituto Nazionale di Fisica Nucleare (INFN)—Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Povo, TN, Italy

Seven hints

- a) Just reducing the sound horizon will introduce other problems:
 - \mathcal{B} aryon Acoustic Oscillations r_d - H_0 degeneracy slope
- b) Early-time guard rails introducing pre-recombination new physics and maintaining the level of early-time consistency of Λ CDM is difficult:
 - $m{\circ}$ $m{\mathcal{E}}$ arly integrated Sachs-Wolfe effect and its restrictions on early-time new physics
 - \mathcal{G} alaxy power spectrum r_d and k_{eq} -based determinations of H_0
- c) Analyses more-or-less independent of pre-recombination physics some residual amount of post-recombination physics seems to be required:
 - \mathcal{F} ractional matter density (Ω_m) constraints from uncalibrated cosmic standards
 - Cosmic chronometers
 - Ages of the oldest astrophysical objects
 - \mathcal{D} escending trends observed in a wide range of low-z datasets

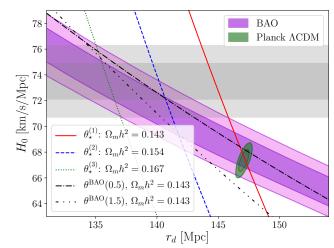
Just reducing the sound horizon will introduce other problems

Hint 1: BAO r_d - H_0 degeneracy slope

CMB and BAO constrain respectively:

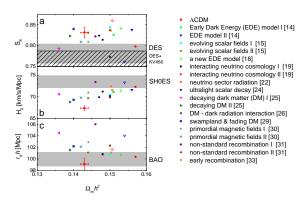
$$heta_\star \equiv rac{r_\star}{D(z_\star)}\,, \qquad heta_d(z_{
m obs}) \equiv rac{r_d}{D(z_{
m obs})}$$

Two sound horizons closely related:


$$r_d \approx 1.0184 r_{\star}$$

Given ω_m , imposing $\theta_\star=$ const and $\theta_d(z_{\rm obs})=$ const defines degeneracy line in r_d - H_0 plane with very different slopes for CMB and BAO (steeper for CMB, because $z_\star\gg z_{\rm obs}$)

Q: what happens if H_0 is raised while *only* lowering r_d ...?


Hint 1: BAO r_d - H_0 degeneracy slope

A: quickly run into trouble with BAO and/or WL data if ω_m is unchanged, but even changing ω_m cannot bring agreement with both!

Hint 1: BAO r_d - H_0 degeneracy slope

Lower $\omega_m \Longrightarrow$ tension with BAO data Higher $\omega_m \Longrightarrow$ tension with WL data (worsen S_8 tension)

Jedamzik, Pogosian & Zhao, Commun. Phys. 4 (2021) 123

New physics which *only* reduces r_s is not enough!

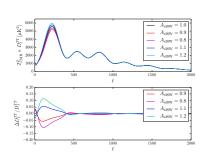
Early-time guard rails

Hint 2: Early ISW effect

Around recombination: Universe not fully matter dominated \implies residual decay of gravitational potentials \implies elSW effect sources anisotropies

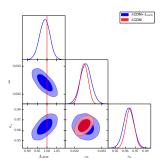
$$\Theta = \int_0^{\eta_0} d\eta \left[\underbrace{\propto g(\Theta_0 + \Psi)}_{\text{Sachs-Wolfe}} + \underbrace{\propto gv_b \frac{d}{d\eta}}_{\text{Doppler}} + \underbrace{\propto e^{-\tau} (\dot{\Psi} - \dot{\Phi})}_{\text{ISW}} + \underbrace{\propto (g\Pi + [g\Pi])}_{\text{Polarization}} \right] j_\ell(k\Delta\eta)$$

$$\Theta_{\ell}^{\mathsf{ISW}}(k) = \underbrace{\int_{0}^{\eta_{m}} d\eta \, e^{-\tau} \left(\dot{\Psi} - \dot{\Phi}\right) j_{\ell}(k\Delta\eta)}_{\mathsf{early ISW}} + \underbrace{\int_{\eta_{m}}^{\eta_{0}} d\eta \, e^{-\tau} \left(\dot{\Psi} - \dot{\Phi}\right) j_{\ell}(k\Delta\eta)}_{\mathsf{late ISW}}$$


(A substantial amount of) New physics increasing H(z) around $z_{\rm eq}/z_{\star}$ should leave an imprint on the eISW effect!

Why is there no clear sign of early-time new physics in CMB data alone?

Hint 2: Early ISW effect


$$\Theta_\ell^{\mathsf{elSW}}(k) = extstyle{\mathsf{A}}_{\mathsf{elSW}} \int_0^{\eta_m} d\eta \, e^{- au} \, \Big(\dot{\Psi} - \dot{\Phi}\Big) j_\ell(k\Delta\eta)$$

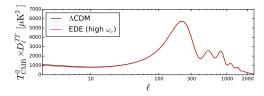
Consistency check: within ΛCDM , data consistent with $A_{elSW}=1$?

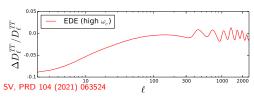
SV, PRD 104 (2021) 063524

Yes! $A_{\text{elSW}} = 0.988 \pm 0.027$ (other parameters stable to within $\lesssim 0.3\sigma$)

Hint 2: Early ISW effect (EDE application)

High H_0 EDE fit to CMB requires increased $\omega_c \rightarrow$ worsens S_8 tension?

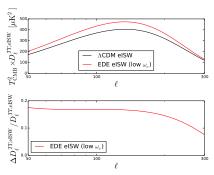

Hill et al., PRD 102 (2020) 043507; Ivanov et al., PRD 102 (2020) 103502; D'Amico et al., JCAP 2105 (2021) 072; see partial rebuttals in: Murgia et al., PRD 103 (2021) 063502; Smith et al., PRD 103 (2021) 123542


Editors' Suggestion

Early dark energy does not restore cosmological concordance

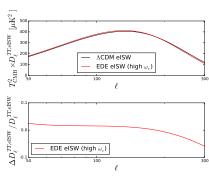
J. Colin Hill, Evan McDonough, Michael W. Toomey, and Stephon Alexander
Phys. Rev. D 102, 043507 – Published 5 August 2020

Parameter	ΛCDM	EDE (high ω_c)	EDE (low ω_c)
$100\omega_b$	2.253	2.253	2.253
ω_c	0.1177	0.1322	0.1177
$H_0 [\mathrm{km/s/Mpc}]$	68.21	72.19	72.19
τ	0.085	0.072	0.072
$ln(10^{10}A_s)$	3.0983	3.0978	3.0978
n_s	0.9686	0.9889	0.9889
$f_{ m EDE}$	-	0.122	0.122
$\log_{10} z_c$	_	3.562	3.562
θ_i	-	2.83	2.83
n	-	3	3



Hint 2: Early ISW effect (EDE application)

Let's extract only eISW contribution to temperature anisotropies...


Low ω_c

SV, PRD 104 (2021) 063524

Almost 20% eISW excess!

High ω_c

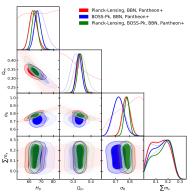

SV, PRD 104 (2021) 063524

No more than \lesssim 3-5% eISW excess

Problem generic to models increasing pre-recombination H(z)

Hint 3: r_{s-} and k_{eq} -based constraints on H_0 from P(k)

Two scales in P(k), both standard rulers

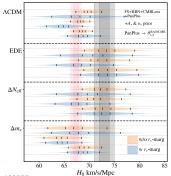


- $k_{\rm eq} = \sqrt{2\Omega_m H_0 z_{\rm eq}}$ (if no extra components with significant pressure support) sets peak and overall shape ($z_{\rm eq} \approx 3500$)
- r_d sets BAO frequency ($z_{\star} \approx 1100$)

Both can be used to infer H_0 : in the presence of a substantial amount of early-time new physics, no reason two values should agree!

Hint 3: r_{s-} and k_{eq} -based constraints on H_0 from P(k)

Can analyze P(k) data removing (most) r_d information (effectively marginalizing over r_d), similarly CMB lensing also sensitive to k_{eq}


Philcox et al., PRD 106 (2022) 063530

 $H_0 = 64.8^{+2.2}_{-2.5}$ (only k_{eq} info): agrees with Λ CDM r_d -based value of H_0 , disfavors significant amount of early-time new physics?

Hint 3: r_{s^-} and k_{eq} -based constraints on H_0 from P(k)

Caveats:

- Current error bars still quite large
- r_d vs r_d -marginalized comparison model-dependent...
- ...and (Ω_m) prior-dependent

Smith, Poulin & Simon, PRD 108 (2023) 103525

Future data should improve discriminatory power, but for the moment this is a consistency test of ΛCDM at best

Analyses more-or-less independent of pre-recombination physics

Hint 4: Ω_m constraints from uncalibrated cosmic standards

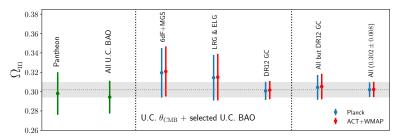
Beneficial to look at joint H_0 - Ω_m constraints rather than just projected H_0 constraints Lin, Mack & Hou, ApJL 904 (2020) L22

Can we determine Ω_m :

- At a level competitive with the CMB model-dependent value?
- Free from early-Universe assumptions (as with BAO+SNela)?

 ΔrH_0 small & insensitive to early-Universe physics Lin, Chen & Mack, ApJ 920 (2021) 159

$$\Delta r H_0 \equiv (r_d - r_{\star}) H_0 = \int_{z_d}^{z_{\star}} dz \, \frac{c_s(z)}{E(z)}$$
 $(z_d - z_{\star}) \sim 30$


Combine θ_{\star} (CMB) and θ_{d} (BAO) in almost early Universe-independent way, with long lever arm to constrain Ω_{m} at level competitive with CMB: Early Universe Physics Insensitive Uncalibrated Cosmic Standards (UCS)

Hint 4: Ω_m constraints from uncalibrated cosmic standards

Data: θ_{\star} (Planck+ACT+WMAP), θ_d (eBOSS), CMB priors on z_{\star} and

 Δz_s , BBN prior on $\Omega_b h^2$

Parameters: Ω_m , \mathcal{M} , r_dH_0 , h (weak dependence)

Lin, Chen & Mack, ApJ 920 (2021) 159

Purely geometrical, early Universe-independent value: $\Omega_m=0.302\pm0.008$ For comparison $\Omega_m=0.310\pm0.006$ in Λ CDM using full CMB information

Hint 4: Ω_m constraints from uncalibrated cosmic standards

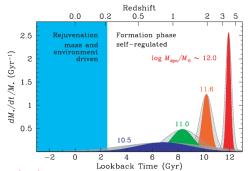
Constraints not exactly along Ω_m direction, weak Ω_m -h degeneracy

$$\left(\frac{\Omega_m}{0.3}\right) \left(\frac{h}{0.7}\right)^{-0.08} = 1.0060 \pm 0.0258$$

Combine UCS with several early Universe-independent late-time, non-local measurements to infer H_0 in an early Universe-independent way

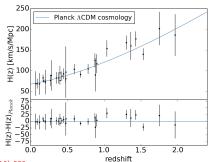
Methods	$H_0 \text{ (km s}^{-1} \text{ Mpc}^{-1}\text{)}$	n - σ from R21		
UCS and individual nonlocal observation	Without θ_{cmb}	With θ_{cmb}	Without θ_{cmb}	With θ_{cml}
Cosmic chronometers				
Current public data	69.1 ± 1.7	68.8 ± 1.6	1.9σ	2.1σ
Extra systematic	69.4 ± 2.3	69.2 ± 2.1	1.4σ	1.6σ
Extra systematic, conservative	69.3 ± 3.4	68.9 ± 3.3	1.1σ	1.2σ
γ-ray optical depth	66.2 ± 3.5	66.1 ± 3.4	1.9σ	2.0σ
Cosmic age				
$t_{\rm U} = 13.5 \pm 0.27 \text{ Gyr}$	70.2 ± 1.7	69.8 ± 1.5	1.4σ	1.7σ
$t_{\rm U} = 13.5 \pm 0.33 \text{ Gyr}$	70.3 ± 2.1	69.8 ± 1.9	1.2σ	1.5σ
CMBlens+DES+BBN	68.8 ± 2.4	68.6 ± 2.0	1.6σ	1.9σ
UCS and joint nonlocal observations ^a				
All nonlocal observations	69.1 ± 1.5	68.8 ± 1.3	2.0σ	2.4σ
Nonlocal observations without cosmic age	68.3 ± 1.9	68.1 ± 1.6	2.1σ	2.5σ
Nonlocal observations without LSS	69.1 ± 1.6	68.8 ± 1.5	2.0σ	2.2σ

Lin, Chen & Mack, ApJ 920 (2021) 159


Residual $\approx 2\sigma$ tension can have nothing to do with early-Universe physics: need late-time new physics and/or local new physics (systematics very unlikely given consistency among independent probes)

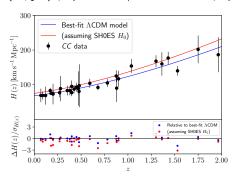
Hint 5: Cosmic chronometers

Take two ensembles of galaxies that formed around the same time and are separated by a small redshift interval Δz around $z_{\rm eff}$: Jiménez & Loeb, ApJ 573 (2002) 37


$$rac{dt}{dz} = -rac{1}{(1+z)H(z)} \implies H(z_{
m eff}) = -rac{1}{1+z_{
m eff}}rac{\Delta z}{\Delta t}$$

Use massive, early-time, passively-evolving galaxies (evolving on a much longer timescale than their age differences)

Hint 5: Cosmic chronometers


- CCs are completely (cosmological) model-independent
- \bullet CCs can be used to infer cosmological/non-local value of H_0
- Analyzing CC requires no assumptions on early-Universe physics
- Contradiction between CCs value of H_0 (assuming Λ CDM) and local H_0 measurements could indicate the need for non-standard late-time ($z\lesssim 2$) physics beyond Λ CDM, or non-standard local physics

Hint 5: Cosmic chronometers

Early-time-independent consistency test of Λ CDM: assuming Λ CDM holds at late times, from CC alone infer $H_0 = 67.5 \pm 3.0$ (note: no systematics!)

- Central value in excellent agreement with *Planck*
- Almost 2σ "tension" with local Cepheid-calibrated SNela H_0
- \bullet Preference for low H_0 not driven by any specific datapoint
- If uncertainties decrease and central value doesn't move, will need new late-time ($z \lesssim 2$) physics and/or new local physics

Historically (1960s-1998) high-z OAOs provided the first hints for the existence of dark energy ($\Omega \neq 1$, $\Omega_{\Lambda} > 0$)

A 3.5-Gyr-old galaxy at redshift 1.55

James Dunlop, John Peacock, Hyron Spinrad, Arjun Dey, Raul Jimenez, Daniel Stern & Rogier Windhorst

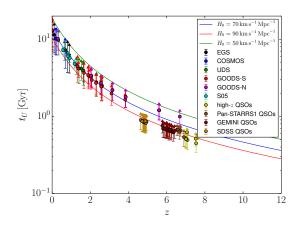
Nature 381, 581-584 (1996) | Cite this article

The observational case for a low-density Universe with a non-zero cosmological constant

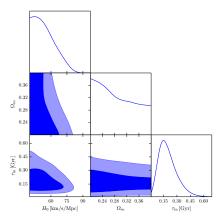
J. P. Ostriker & Paul J. Steinhardt

Nature 377, 600-602 (1995) | Cite this article

What can OAOs do for cosmology in the 2020s?


$$t_U(z) = \int_z^\infty \frac{dz'}{(1+z')H(z')} \propto \frac{1}{H_0}$$

- ullet OAOs cannot be older than the Universe \to upper limit on H_0
- $t_U(z)$ integral insensitive to early-time cosmology
- $\bullet \ \to \text{late-time } \land \text{CDM consistency test independent of early times!}$
- Ages of astrophysical objects at z > 0 hard to estimate robustly \triangle

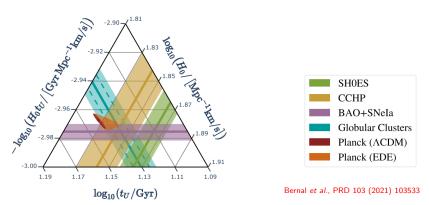

Usefulness in relation to the H_0 tension:

- Contradiction between OAOs upper limit on H_0 and local H_0 measurements could indicate the need for non-standard late-time ($z \lesssim 10$) physics, or non-standard local physics
- Conclusions completely independent of pre-recombination physics

Age-redshift diagram up to $z\sim 8$

Assume Λ CDM at late times, constrain H_0 and Ω_m

CAVEAT – If the OAOs ages are reliable, possible explanations are:


- ACDM may not be the end of the story at $z \lesssim 10$
- ② Nothing wrong with Λ CDM at $z\lesssim 10$, need new physics on local scales
- **3** Just a boring 2σ fluke or systematics?

SV, Pacucci & Loeb, JHEAp 36 (2022) 27

 $H_0 < 73.2 \ (95\% \ C.L.)$

Hint 6: OAOs

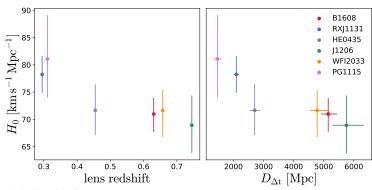
Cosmic triangles: current cosmological data within a given model are over-constrained, look at quantities beyond H_0 and r_d (e.g. Ω_m , t_U)

If high $t_U(z=0)$ measured reliably and with small uncertainties, models with high H_0 and standard low-z physics disfavored

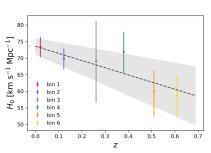
Mathematically speaking, dynamical models (e.g. ΛCDM) break down if values of (constant) fitting parameters pick up time dependence

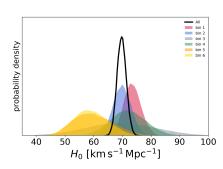
Integrate 1st Friedmann equation with $w_{\text{eff}}(z)$ prescribed (in FLRW):

$$H_0 = H(z) \exp \left[-\frac{3}{2} \int_0^z dz' \, \frac{1 + w_{\text{eff}}(z')}{1 + z'} \right]$$


 $H(z) \sim \text{data}$ $w_{\text{eff}}(z')$: prescribed model H_0 : inferred fitting parameter (here mathematically integration constant)

If input $w_{\rm eff}(z)$ and data "disagree", H_0 picks up z-dependence and "runs" at all redshifts Krishnan et al., PRD 103 (2021) 103509


If H_0 tension physical and at least some late-time new physics involved, z-evolution of H_0 at intermediate z (0 < z < z_*) inevitable!


- Has such a z-evolution already been observed in current data?
- Has it been observed in independent datasets with a common trend?
- Are there mundane explanations for its size and direction?

Perhaps most famous example observed in H0LiCOW data ($\sim 2\sigma$)

Combination of (binned) low-z datasets: megamaser distances, CCs, isotropic BAO, *Pantheon* SNela (r_d treated as free parameter)

Krishnan et al., PRD 102 (2020) 103525

 $\sim 2.1\sigma$ significance, slope consistent with H0LiCOW

Similar trends (descending H_0 and/or increasing Ω_m) observed in many different dataset combinations:

- Pantheon SNela Dainotti et al., ApJ 912 (2021) 150
- PantheonPlus+SH0ES SNela Jia, Hu & Wang, A&A 674 (2023) A45
- PantheonPlus SNela Malekjani et al., arXiv:2301.12725
- Pantheon SNela Horstmann, Pietschke & Schwarz, A&A 668 (2022) A34
- CC+Pantheon SNela+QSOs Ó Colgáin et al., arXiv:2206.11447
- QSOs Risaliti & Lusso, Nat. Astron. 3 (2019) 272
- $f\sigma_8$ measurements: S_8 increasing with z Adil et al., MNRAS Lett. 528 (2024) L20
- ...and others!

Question: could this be expected even within Λ CDM? (naïve guess: at high z lose sensitivity to DE, so expect $\Omega_m \uparrow \Longrightarrow H_0 \downarrow$)

Mock analysis seems to suggest effect is too big and should be seen at higher redshift ó Colgáin, Sheikh-Jabbari & Solomon, PDU 40 (2023) 101216

Where to from here? Some scattered thoughts

- Empirically: early-time physics only seems to reach $H_0 \sim 70$ (no external priors)
- Idea: combine early-time and late-time (both non-local) and local new physics?
- Direction of late-time physics: lower $d_A(z)$ at z > 0 (phantom/interacting DE?)
- CMB+BAO/SNeIa actually can tolerate w as low as ~ -1.07 , H_0 responds as $\Delta H_0 \sim -20(1+w)$, so this can help as much as $\Delta H_0 \sim 1.5$ SV, PRD 102 (2020) 023518
- If there is also some local new physics lowering local H_0 , maybe don't need non-local H_0 to go all the way up to \sim 74 after all? (two can meet halfway)
- Early-time new physics probably still need to do the lion's share of the job...
- Early+late: can two models decouple, both "push" non-local H₀ up separately, combining their tension-solving virtues "in phase" / "constructively"?

Occam's razor

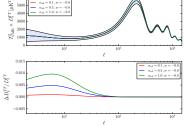
Objection: wouldn't this violate Occam's razor?

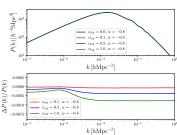
My opinion ↓

Credits: Wiley Miller

Nature is under no obligation to look simple to us!

Where to from here? What about the S_8 tension?


Early times: a relatively successful early-time model (EDE and variants, Δm_e ,...)


Late times: scattering-type new physics (at 1st order does not affect background but only perturbations) involving DM and/or DE \rightarrow decouple S_8 -solving effects from H_0 -solving ones, combine the two constructively?

Example: DE-baryon scattering

$$\dot{\theta}_b = -\mathcal{H}\theta_b + c_s^2 k^2 \delta_b + \frac{4\rho_\gamma}{3\rho_b} a n_e \sigma_T (\theta_\gamma - \theta_b) + (1 + w_x) \frac{\rho_x}{\rho_b} a n_e \sigma_{xb} (\theta_x - \theta_b)$$

$$\dot{\theta}_x = -\mathcal{H}(1 - 3c_s^2) \theta_x + \frac{c_s^2 k^2}{1 + w_x} \delta_x + a n_e \sigma_{xb} (\theta_b - \theta_x)$$

Dark scattering (and S_8)

Lots of room for dark scattering

Concrete recent example explicitly discussing the S_8 tension

Sigma-8 tension is a drag

Vivian Poulin®, José Luis Bernal, Ely D. Kovetz®, and Marc Kamionkowski®²

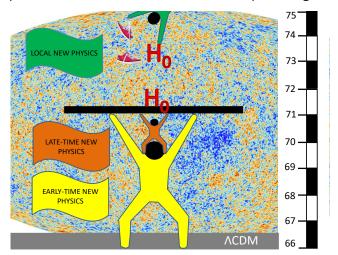
*Laboratoire Univers and Farticules de Montpellier (ULPM),
CNRS and Université de Montpellier (URM-S2),
Place Eugène Bataillon, F-3405 Montpellier Cedex 05, France

*Villiam H. Miller III Department of Physics, Johns Hopkins University,
3400 North Charles Street, Baltimore, Maryland 21218 USA

*Physics Department, Ben-Garino University of the Negev, 34105 Beersheba, Israel

(Received 23 September 2022; accepted 8 June 2023; published 30 June 2023)

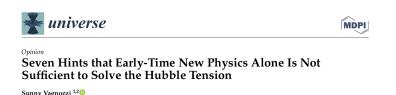
Poulin et al., PRD 107 (2023) 123538


Possible underlying Lagrangian: "Type 3" coupled DE models (scalar field derivative coupling to velocity)

Models of dark matter coupled to dark energy

A. Pourtsidou, C. Skordis, and E. J. Copeland Phys. Rev. D **88**, 083505 – Published 9 October 2013

Where to from here?


Pictorial representation of what I think could be a promising scenario

Credits: Cristina Ghirardini 40 / 41

Conclusions

- Early-time new physics alone cannot solve the Hubble tension
- My opinion: will probably need a combination of early-time and late-time (both non-local) and local new physics, so that non-local and local H_0 might not need to meet at ~ 74 but halfway
- Dark scattering models are particularly worth exploring

Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo, TN, Italy; sunnyyaenozzi@unitn.it

² Istituto Nazionale di Fisica Nucleare (INFN)—Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Povo, TN, Italy