Seven hints that early-time new physics alone is not sufficient to solve the Hubble tension

#### Sunny Vagnozzi

Department of Physics, University of Trento Trento Institute for Fundamental Physics (TIFPA)-INFN

⊠ sunny.vagnozzi@unitn.it

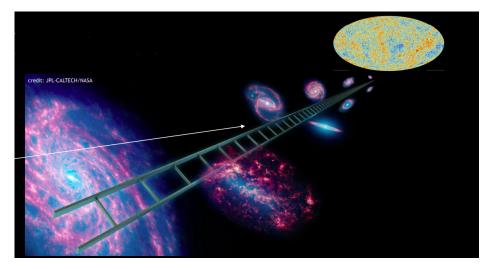
☆ www.sunnyvagnozzi.com

STAR - Babeş-Bolyai University (UBB), 22 June 2023



Dipartimento di Fisica




 $H_0$ : current rate of expansion of the Universe

## Why care about $H_0$ ?

• Allan Sandage, 1970: "Cosmology can be described as the search for two numbers: the current rate of expansion [H<sub>0</sub>] and the deceleration of the expansion [q<sub>0</sub>]"

• Adam Riess, 2019: " $H_0$  is the ultimate end-to-end test for  $\Lambda CDM$ " See review by Di Valentino et al., CQG 38 (2021) 153001

#### $H_0$ as an end-to-end test



#### How to measure $H_0$ ?

Always a good idea in cosmology: measure distances to measure the expansion rate

Luminosity distance:

$$d_L(z) = (1+z) \frac{1}{H_0 \sqrt{\Omega_K}} \sinh \left[ H_0 \sqrt{\Omega_K} \int_0^z \frac{dz'}{H(z')} \right]$$

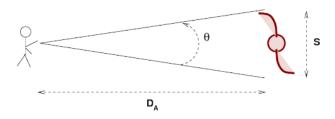
Angular diameter distance:

$$d_{A}(z) = \frac{1}{1+z} \frac{1}{H_0 \sqrt{\Omega_{K}}} \sinh \left[ H_0 \sqrt{\Omega_{K}} \int_0^z \frac{dz'}{H(z')} \right]$$

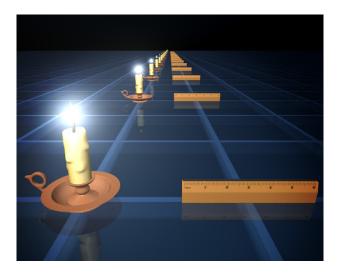
#### Standard candles and standard rulers

In practice "infer distances" = "measure fluxes or angles"

Fluxes:

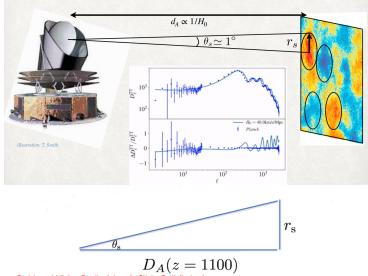

$$d_L = \sqrt{\frac{L}{4\pi f}}$$

L=intrinsic luminosity


Angles:

 $d_A = \frac{s}{\theta}$ 

s=intrinsic physical size




#### Standard candles and standard rulers



Credits: NASA/JPL-Caltech/R. Hurt (SSC)

#### The CMB as a (self-calibrated) standard ruler



Credits: Tristan Smith and Vivian Poulin (above), Silvia Galli (below)

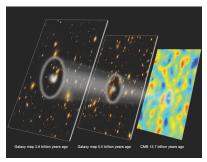
### Applying the ruler

Units of  $H_0$  always implicitly km/s/Mpc from now on

# $H_0 = 67.27 \pm 0.60$ (Planck 2018 TTTEEE+lowE)

Planck collaboration, A&A 641 (2020) A6

Confirmed by ACT


 $H_0 = 67.9 \pm 1.5$ (ACT DR4)

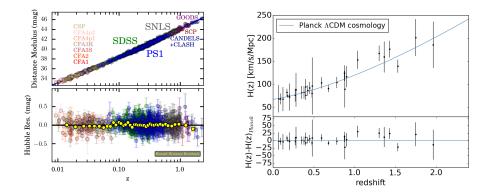
ACT collaboration, JCAP 2012 (2020) 047

#### Late-time guard rails: the role of BAO

Can measure the sound horizon feature at different redshifts:

$$heta_{\mathsf{BAO}} \sim rac{r_s(z_\star)}{d_A(z_{\mathsf{BAO}})}$$




Credits: Eric Huff and the BOSS/SPT collaborations

BAO constrain  $H_0r_s$ , stabilizes  $H_0$  constraints from CMB alone, breaks geometrical degeneracy (particularly in models with late-time new physics)

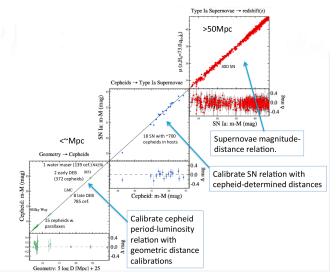
#### Other late-time guard rails

Uncalibrated Hubble flow SNela: constrain slope of H(z)

Cosmic chronometers: constrain absolute scale of H(z)



Moresco et al., JCAP 1612 (2016) 039


Scolnic et al., ApJ 859 (2018) 101

#### Combining CMB and late-time guard rails

# $H_0 = 67.72 \pm 0.40$ (CMB+BAO+uncalibrated SNela)

#### Calibrating the local distance ladder with Cepheids

3-rung distance ladder Adapted from Adam Riess and Silvia Galli



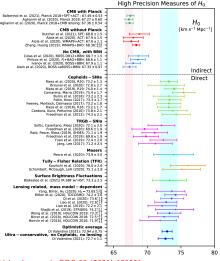
#### Calibrating the local distance ladder with Cepheids

PantheonPlus+SH0ES: several distance anchors, 42 calibrator SNela,  $\sim$  300 SNela at  $z < 0.15 \rightarrow 1.4\%$  measurement of  $H_0!$  Riess et al., ApJL 934 (2022) L7

# $H_0 = 73.04 \pm 1.04$ (Cepheid-calibrated SNeIa, R22)

compare against

## $H_0 = 67.72 \pm 0.40$ (CMB+BAO+uncalibrated SNela)


Almost  $5\sigma$  tension!

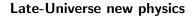
#### The trouble

Several other inferences of  $H_0$  beyond those discussed earlier, which make the tension more (or less) severe

Overall trend:

- "early-time" model-dependent measurements prefer low *H*<sub>0</sub>
- "late-time" direct measurements prefer high *H*<sub>0</sub>



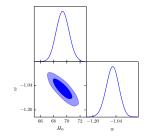

Di Valentino et al., CQG 38 (2021) 153001

A naïve first approach: CMB vs local measurements only


$$\theta_s = \frac{r_s(z_\star)}{d_A(z_\star)} = \frac{\int_{z_\star}^{\infty} \frac{dz'}{H(z')}}{\int_0^{z_\star} \frac{dz''}{H(z'')}}$$

Early-Universe new physics

Prototype:  $N_{\rm eff} > 3.046$ 

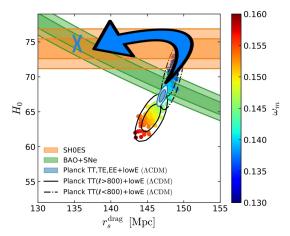



Prototype: w < -1



SV, PRD 102 (2020) 023518

 $r_s(z_{\star})$  and  $d_A(z_{\star})$  decrease at fixed  $\theta_s$ ,  $H_0$  increases to decrease  $d_A(z_{\star})$ 




#### SV, PRD 102 (2020) 023518

 $r_s(z_{\star})$  and  $d_A(z_{\star})$  fixed so  $\theta_s$  fixed,  $d_A(z < z_{\star})$  decreases to increase  $H_0$ 

#### Hubble tension no-go theorem

Solving the tension seems to require lowering  $r_s$  by  $\approx 7\%$ 



Knox & Millea, PRD 101 (2020) 043533

This would seem to require early-time (pre-recombination) new physics!

#### Hubble tension no-go theorem?

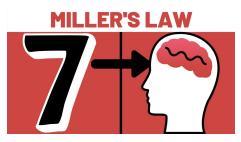
...yet, we still haven't been able to construct a model truly fixing  $H_0$  (empirically, early-Universe new physics only seems to get to  $H_0 \sim 70$ )

### Is early-time new physics the end of the story?

Perhaps not...

#### Opinion

## Seven hints that early-time new physics alone is not sufficient to solve the Hubble tension


#### Sunny Vagnozzi 1,20

- <sup>1</sup> Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (TN), Italy
- <sup>2</sup> Istituto Nazionale di Fisica Nucleare (INFN)-Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Povo (TN), Italy E-mail: sunny.vagnozzi@unitn.it

#### Seven hints

- $\mathcal{A}_{\text{ges}}$  of the oldest astrophysical objects
- $\mathcal{B}$ aryon Acoustic Oscillations  $r_d$ - $H_0$  degeneracy slope
- Cosmic chronometers
- $\mathcal{D}$ escending trends observed in a wide range of low-z datasets
- $\mathcal{E}$ arly integrated Sachs-Wolfe effect and its restrictions on early-time new physics
- $\mathcal{F}$ ractional matter density  $(\Omega_m)$  constraints from uncalibrated cosmic standards
- $\mathcal{G}$ alaxy power spectrum  $r_{d^-}$  and  $k_{eq}$ -based determinations of  $H_0$

Why seven? (Why not?) Miller, Psychol. Rev. 63 (1956) 81



Historically (1960s-1998) high-z OAOs provided the first hints for the existence of dark energy ( $\Omega \neq 1$ ,  $\Omega_{\Lambda} > 0$ )

#### A 3.5-Gyr-old galaxy at redshift 1.55

James Dunlop, John Peacock, Hyron Spinrad, Arjun Dey, Raul Jimenez, Daniel Stern & Rogier Windhorst

Nature 381, 581–584 (1996) Cite this article

### Conflict over the age of the Universe

M. Bolte & C. J. Hogan

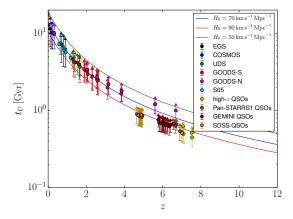
Nature 376, 399-402 (1995) Cite this article

## The observational case for a low-density Universe with a non-zero cosmological constant

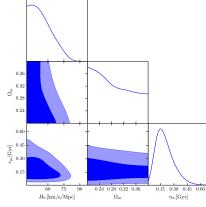
J. P. Ostriker & Paul J. Steinhardt

Nature 377, 600-602 (1995) Cite this article

What can OAOs do for cosmology in the 2020s?


$$t_U(z) = \int_z^\infty rac{dz'}{(1+z')H(z')} \propto rac{1}{H_0}$$

- $\bullet$  OAOs cannot be older than the Universe  $\rightarrow$  upper limit on  $H_0$
- $t_U(z)$  integral insensitive to early-time cosmology
- $\bullet \rightarrow \textbf{late-time } \land \textbf{CDM consistency test independent of early times!}$
- Ages of astrophysical objects at z > 0 hard to estimate robustly  $\boxed{\mathbb{M}}$


Usefulness in relation to the  $H_0$  tension:

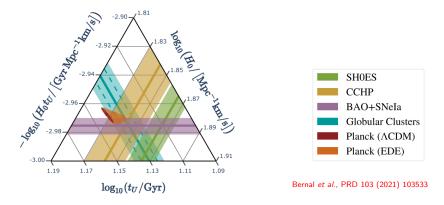
- Contradiction between OAOs upper limit on  $H_0$  and local  $H_0$ measurements could indicate the need for non-standard late-time ( $z \lesssim 10$ ) physics, or non-standard local physics
- Conclusions completely independent of pre-recombination physics

Age-redshift diagram up to  $z\sim 8$ 



Assume  $\Lambda$ CDM at late times, constrain  $H_0$ ,  $\Omega_m$ , and incubation time  $\tau_{in}$ Prior for  $\tau_{in}$  following Jiménez et al., JCAP 1903 (2019) 043; Valcin et al., JCAP 2012 (2020) 022




SV, Pacucci & Loeb, JHEAp 36 (2022) 27  $H_0 < 73.2 \ (95\% \ {
m C.L.})$ 

CAVEAT – If the OAOs ages are reliable, possible explanations are:

- #1: ACDM may not be the end of the story at  $z \lesssim 10$
- #2: Nothing wrong with  $\Lambda$ CDM at  $z \lesssim 10$ , need new physics on local scales
- #3: Just a boring 2σ fluke or systematics?

#### Hint 1: OAOs

Cosmic triangles: current cosmological data within a given model are over-constrained, look at quantities beyond  $H_0$  and  $r_d$  (e.g.  $\Omega_m$ ,  $t_U$ )



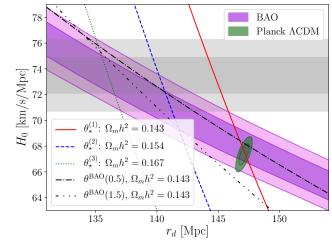
If high  $t_U(z = 0)$  measured reliably and with small uncertainties, models with high  $H_0$  and standard low-z physics disfavored

#### Hint 2: BAO $r_d$ - $H_0$ degeneracy slope

CMB and BAO constrain respectively:

$$\theta_{\star} \equiv \frac{r_{\star}}{D(z_{\star})}, \qquad \theta_d(z_{\rm obs}) \equiv \frac{r_d}{D(z_{\rm obs})}$$

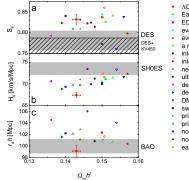
Two sound horizons closely related:


$$r_d \approx 1.0184 r_{\star}$$

For given  $\omega_m$ , imposing  $\theta_* = \text{const}$  and  $\theta_d(z_{\text{obs}}) = \text{const}$  defines a degeneracy line in the  $r_d$ - $H_0$  plane with very different slopes for CMB and BAO (steeper for CMB, because  $z_* \gg z_{\text{obs}}$ )

Q: what happens if  $H_0$  is raised while only lowering  $r_d$ ...?

#### Hint 2: BAO $r_d$ - $H_0$ degeneracy slope


A: quickly run into trouble with BAO and/or WL data if  $\omega_m$  is unchanged, but even changing  $\omega_m$  cannot bring agreement with both!



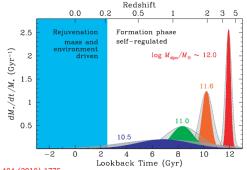
Jedamzik, Pogosian & Zhao, Commun. Phys. 4 (2021) 123

#### Hint 2: BAO $r_d$ - $H_0$ degeneracy slope

Lower  $\omega_m \implies$  tension with BAO data Higher  $\omega_m \implies$  tension with WL data (worsen  $S_8$  tension)

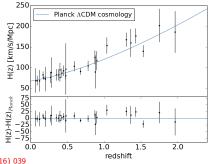


- **ACDM**
- Early Dark Energy (EDE) model I [14]
- EDE model II [14]
- evolving scalar fields | [15]
- evolving scalar fields II [15]
- a new EDE model [18]
- interacting neutrino cosmology [ [19]
- interacting neutrino cosmology II [19]
- neutrino sector radiation [22]
- ultralight scalar decay [24]
- decaving dark matter (DM) I [25]
- decaying DM II [25]
- DM dark radiation interaction [26]
- swampland & fading DM [29]
- primordial magnetic fields | [30]
- primordial magnetic fields II [30]
- non-standard recombination I [31]
- non-standard recombination II [31]
- early recombination [33]


Jedamzik, Pogosian & Zhao, Commun. Phys. 4 (2021) 123 New physics which only reduces  $r_s$  is not enough!

#### Hint 3: Cosmic chronometers

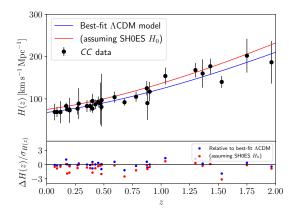
Take two ensembles of galaxies that formed around the same time and are separated by a small redshift interval  $\Delta z$  around  $z_{eff}$ : Jiménez & Loeb, ApJ 573 (2002) 37


$$rac{dt}{dz} = -rac{1}{(1+z)H(z)} \implies H(z_{
m eff}) = -rac{1}{1+z_{
m eff}}rac{\Delta z}{\Delta t}$$

Use massive, early-time, passively-evolving galaxies (evolving on a much longer timescale than their age differences)



#### Hint 3: Cosmic chronometers


- CCs are completely (cosmological) model-independent
- CCs can be used to infer cosmological/non-local value of  $H_0$
- Analyzing CC requires no assumptions on early-Universe physics
- Contradiction between CCs value of  $H_0$  (assuming  $\Lambda$ CDM) and local  $H_0$  measurements could indicate the need for non-standard late-time ( $z \leq 2$ ) physics beyond  $\Lambda$ CDM, or non-standard local physics



#### Hint 3: Cosmic chronometers

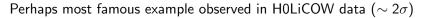
Early-time-independent consistency test of ACDM: assuming ACDM holds at late times, from CC alone infer  $H_0=67.5\pm3.0$ 

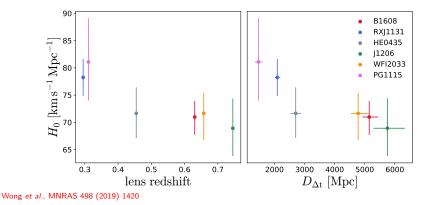
- Central value in excellent agreement with Planck
- Almost  $2\sigma$  "tension" with local Cepheid-calibrated SNeIa  $H_0$
- Preference for low  $H_0$  not driven by any specific datapoint



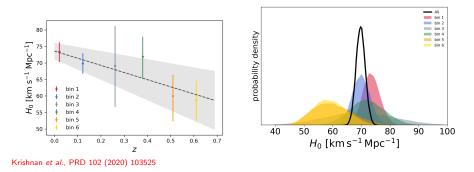
Mathematically speaking, dynamical models (e.g. ACDM) break down if values of (constant) fitting parameters pick up time dependence

Integrate 1st Friedmann equation with  $w_{eff}(z)$  prescribed (in FLRW):


$$H_0 = H(z) \exp\left[-\frac{3}{2} \int_0^z dz' \frac{1 + w_{\text{eff}}(z')}{1 + z'}\right]$$

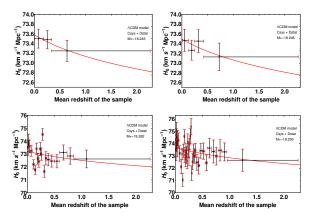

 $H(z) \sim \text{data}$   $w_{\text{eff}}(z')$ : prescribed model  $H_0$ : inferred fitting parameter (here mathematically integration constant)

If input  $w_{eff}(z)$  and data "disagree",  $H_0$  picks up z-dependence and "runs" at all redshifts Krishnan et al., PRD 103 (2021) 103509


If  $H_0$  tension physical, z-evolution of  $H_0$  at intermediate z inevitable!

- Has such a z-evolution already been observed in current data?
- Has it been observed in independent datasets with a common trend?
- Are there mundane explanations for its size and direction?






Combination of (binned) low-z datasets: megamaser distances, CCs, isotropic BAO, *Pantheon* SNela ( $r_d$  treated as free parameter)

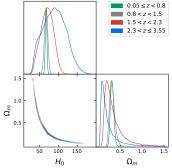


 $\sim 2.1\sigma$  significance, slope consistent with H0LiCOW, by construction independent of early-Universe physics

#### (Binned) Pantheon SNela



Dainotti et al., ApJ 912 (2021) 150


 $\sim 2\sigma$  significance, well fit by  $H(z) = H_0(1+z)^{-\alpha}$ , with  $\alpha \sim 10^{-2}$ 

Similar trends (descending  $H_0$  and/or increasing  $\Omega_m$ ) observed in many different dataset combinations:

- PantheonPlus+SH0ES SNela Jia, Hu & Wang, A&A 674 (2023) A45
- PantheonPlus SNela Malekjani et al., arXiv:2301.12725
- Pantheon SNela Horstmann, Pietschke & Schwarz, A&A 668 (2022) A34
- CC+Pantheon SNela+QSOs Ó Colgáin *et al.*, arXiv:2206.11447
- QSOs Risaliti & Lusso, Nat. Astron. 3 (2019) 272
- $f\sigma_8$  measurements:  $S_8$  increasing with redshift Adil et al., arXiv:2303.06928
- …and others!

Question: could this be expected even within  $\Lambda CDM$ ? (naïve guess: at high z lose sensitivity to DE, so expect  $\Omega_m \uparrow \implies H_0 \downarrow$ )

Forecast with mock data matching expected sensitivity of DESI



Ó Colgáin, Sheikh-Jabbari & Solomon, PDU 40 (2023) 101216

- Slight trend actually in the opposite direction
- Trend seen at z smaller than those where one expects to see it
- Expected size in any case much smaller than what is observed

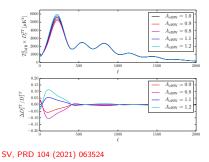
Taken seriously, descending trends indicate need for new late-time physics

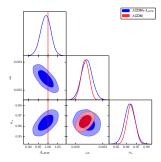
#### Hint 5: Early ISW effect

Around recombination: Universe not fully matter dominated  $\implies$  residual decay of gravitational potentials  $\implies$  eISW effect sources anisotropies

$$\Theta = \int_{0}^{\eta_{0}} d\eta \left[ \underbrace{\propto g(\Theta_{0} + \Psi)}_{\text{Sachs-Wolfe}} + \underbrace{\propto gv_{b}}_{\text{Doppler}} \frac{d}{d\eta} + \underbrace{\propto e^{-\tau}(\dot{\Psi} - \dot{\Phi})}_{\text{ISW}} + \underbrace{\propto (g\Pi + [\ddot{g}\Pi])}_{\text{Polarization}} \right] j_{\ell}(k\Delta\eta)$$
$$\Theta_{\ell}^{\text{ISW}}(k) = \underbrace{\int_{0}^{\eta_{m}} d\eta \, e^{-\tau} \left(\dot{\Psi} - \dot{\Phi}\right) j_{\ell}(k\Delta\eta)}_{\text{early ISW}} + \underbrace{\int_{\eta_{m}}^{\eta_{0}} d\eta \, e^{-\tau} \left(\dot{\Psi} - \dot{\Phi}\right) j_{\ell}(k\Delta\eta)}_{\text{late ISW}}$$

(A substantial amount of) New physics increasing H(z) around  $z_{eq}/z_{\star}$  should leave an imprint on the eISW effect!


Why is there no clear sign of early-time new physics in CMB data alone?


### Hint 5: Early ISW effect

$$\Theta_{\ell}^{\mathsf{elSW}}(k) = A_{\mathsf{elSW}} \int_{0}^{\eta_{m}} d\eta \, e^{-\tau} \left( \dot{\Psi} - \dot{\Phi} \right) j_{\ell}(k\Delta\eta)$$

Consistency check: within  $\Lambda CDM$ , data consistent with  $A_{elSW} = 1$ ?

Yes!  $A_{eISW} = 0.988 \pm 0.027$  (other parameters stable to within  $\lesssim 0.3\sigma$ )

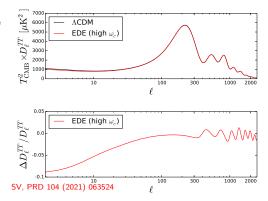




SV, PRD 104 (2021) 063524

### Hint 5: Early ISW effect

#### High $H_0$ EDE fit to CMB requires increased $\omega_c \rightarrow$ worsens $S_8$ tension?

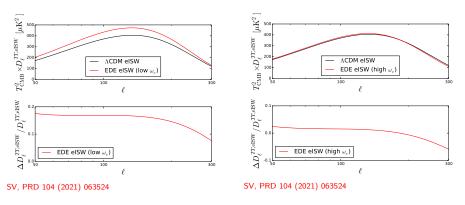

Hill et al., PRD 102 (2020) 043507; Ivanov et al., PRD 102 (2020) 103502; D'Amico et al., JCAP 2105 (2021) 072; see partial rebuttals in: Murgia et al., PRD 103 (2021) 063502; Smith et al., PRD 103 (2021) 123542

#### Editors' Suggestion

Early dark energy does not restore cosmological concordance

J. Colin Hill, Evan McDonough, Michael W. Toomey, and Stephon Alexander Phys. Rev. D 102, 043507 – Published 5 August 2020

| Parameter              | ΛCDM   | EDE (high $\omega_c$ ) | EDE (low $\omega_c$ ) |
|------------------------|--------|------------------------|-----------------------|
| $100\omega_b$          | 2.253  | 2.253                  | 2.253                 |
| $\omega_c$             | 0.1177 | 0.1322                 | 0.1177                |
| $H_0  [{ m km/s/Mpc}]$ | 68.21  | 72.19                  | 72.19                 |
| τ                      | 0.085  | 0.072                  | 0.072                 |
| $\ln(10^{10}A_s)$      | 3.0983 | 3.0978                 | 3.0978                |
| $n_s$                  | 0.9686 | 0.9889                 | 0.9889                |
| $f_{\rm EDE}$          | -      | 0.122                  | 0.122                 |
| $\log_{10} z_c$        | -      | 3.562                  | 3.562                 |
| $\theta_i$             | -      | 2.83                   | 2.83                  |
| n                      | -      | 3                      | 3                     |




## Hint 5: Early ISW effect

Let's extract only eISW contribution to temperature anisotropies...

Low  $\omega_c$ 





Almost 20% eISW excess!

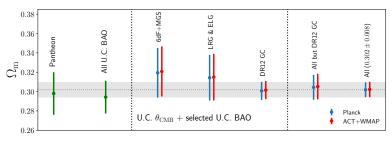
No more than  $\lesssim$  3-5% eISW excess

Problem generic to models increasing pre-recombination H(z)

# Hint 6: $\Omega_m$ constraints from EUPIUCS

Beneficial to look at joint  $H_0$ - $\Omega_m$  constraints rather than just projected  $H_0$  constraints Lin, Mack & Hou, ApJL 904 (2020) L22 Can we determine  $\Omega_m$ :

- At a level competitive with the CMB model-dependent value?
- Free from early-Universe assumptions (as with BAO+SNela)?


 $\Delta r H_0$  small & insensitive to early-Universe physics Lin, Chen & Mack, ApJ 920 (2021) 159

$$\Delta r H_0 \equiv (r_d - r_{\star}) H_0 = \int_{z_d}^{z_{\star}} dz \, \frac{c_s(z)}{E(z)} \qquad (z_d - z_{\star}) \sim 30$$

Combine  $\theta_{\star}$  (CMB) and  $\theta_d$  (BAO) in almost early Universe-independent way, with long lever arm to constrain  $\Omega_m$  at level competitive with CMB: Early Universe Physics Insensitive Uncalibrated Cosmic Standards (UCS)

### Hint 6: $\Omega_m$ constraints from EUPIUCS

Data:  $\theta_{\star}$  (*Planck*+ACT+WMAP),  $\theta_d$  (eBOSS), CMB priors on  $z_{\star}$  and  $\Delta z_s$ , BBN prior on  $\Omega_b h^2$ Parameters:  $\Omega_m$ ,  $\mathcal{M}$ ,  $r_d H_0$ , h (weak dependence)



#### Lin, Chen & Mack, ApJ 920 (2021) 159

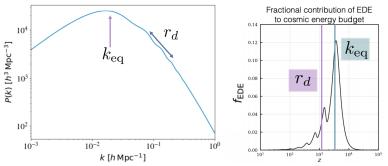
Purely geometrical, early Universe-independent value:  $\Omega_m = 0.302 \pm 0.008$ For comparison  $\Omega_m = 0.310 \pm 0.006$  in ACDM using full CMB information

# Hint 6: $\Omega_m$ constraints from EUPIUCS

Constraints not exactly along  $\Omega_m$  direction, weak  $\Omega_m$ -h degeneracy

$$\left(\frac{\Omega_m}{0.3}\right) \left(\frac{h}{0.7}\right)^{-0.08} = 1.0060 \pm 0.0258$$

Combine UCS with several early Universe-independent late-time, non-local measurements to infer  $H_0$  in an early Universe-independent way


| Methods                                          | $H_0 (\text{km s}^{-1} \text{Mpc}^{-1})$ |                                  | $n-\sigma$ from R21    |                     |
|--------------------------------------------------|------------------------------------------|----------------------------------|------------------------|---------------------|
| UCS and individual nonlocal observation          | Without $\theta_{cmb}$                   | With $\theta_{cmb}$              | Without $\theta_{cmb}$ | With $\theta_{cmb}$ |
| Cosmic chronometers                              |                                          |                                  |                        |                     |
| Current public data                              | $69.1 \pm 1.7$                           | $\textbf{68.8} \pm \textbf{1.6}$ | $1.9\sigma$            | $2.1\sigma$         |
| Extra systematic                                 | $69.4 \pm 2.3$                           | $69.2\pm2.1$                     | $1.4\sigma$            | $1.6\sigma$         |
| Extra systematic, conservative                   | $69.3 \pm 3.4$                           | $\textbf{68.9} \pm \textbf{3.3}$ | $1.1\sigma$            | $1.2\sigma$         |
| γ-ray optical depth                              | $66.2 \pm 3.5$                           | $66.1 \pm 3.4$                   | $1.9\sigma$            | $2.0\sigma$         |
| Cosmic age                                       |                                          |                                  |                        |                     |
| $t_{\rm U} = 13.5 \pm 0.27 \text{ Gyr}$          | $70.2 \pm 1.7$                           | $69.8 \pm 1.5$                   | $1.4\sigma$            | $1.7\sigma$         |
| $t_{\rm U} = 13.5 \pm 0.33 \text{ Gyr}$          | $70.3 \pm 2.1$                           | $69.8 \pm 1.9$                   | $1.2\sigma$            | $1.5\sigma$         |
| CMBlens+DES+BBN                                  | $68.8 \pm 2.4$                           | $\textbf{68.6} \pm \textbf{2.0}$ | $1.6\sigma$            | $1.9\sigma$         |
| UCS and joint nonlocal observations <sup>a</sup> |                                          |                                  |                        |                     |
| All nonlocal observations                        | $69.1 \pm 1.5$                           | $\textbf{68.8} \pm \textbf{1.3}$ | $2.0\sigma$            | $2.4\sigma$         |
| Nonlocal observations without cosmic age         | $68.3 \pm 1.9$                           | $\textbf{68.1} \pm \textbf{1.6}$ | $2.1\sigma$            | $2.5\sigma$         |
| Nonlocal observations without LSS                | $69.1 \pm 1.6$                           | $\textbf{68.8} \pm \textbf{1.5}$ | $2.0\sigma$            | $2.2\sigma$         |

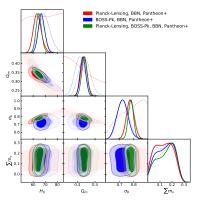
Lin, Chen & Mack, ApJ 920 (2021) 159

Residual  $\approx 2\sigma$  tension can have nothing to do with early-Universe physics: need late-time new physics and/or local new physics (systematics very unlikely given consistency among independent probes)

# Hint 7: $r_s$ - and $k_{eq}$ -based constraints on $H_0$ from P(k)

Two scales in P(k), both standard rulers




Credits: Oliver Philcox

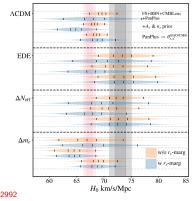
- $k_{\rm eq} = \sqrt{2\Omega_m H_0 z_{\rm eq}}$  sets peak and overall shape ( $z_{\rm eq} \approx 3500$ )
- $r_d$  sets BAO frequency ( $z_{\star} \approx 1100$ )

Both can be used to infer  $H_0$ : in the presence of a substantial amount of new physics, no reason two values should agree!

# Hint 7: $r_s$ - and $k_{eq}$ -based constraints on $H_0$ from P(k)

Can analyze P(k) data removing (most)  $r_d$  information (effectively marginalizing over  $r_d$ ), similarly CMB lensing also sensitive to  $k_{eq}$ 




#### Philcox et al., PRD 106 (2022) 063530

 $H_0 = 64.8^{+2.2}_{-2.5}$  (only  $k_{eq}$  info): agrees with  $\Lambda$ CDM  $r_d$ -based value of  $H_0$ , disfavors significant amount of early-time new physics?

# Hint 7: $r_s$ - and $k_{eq}$ -based constraints on $H_0$ from P(k)

Caveats:

- Current error bars still quite large
- r<sub>d</sub> vs r<sub>d</sub>-marginalized comparison model-dependent...
- ...and  $(\Omega_m)$  prior-dependent



Smith, Poulin & Simon, arXiv:2208.12992

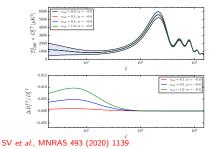
Future data should improve discriminatory power!

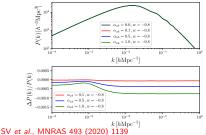
#### Where to from here? Some scattered thoughts

- Empirically: early-time physics only seems to reach  $H_0 \sim 70$  (no external priors)
- Idea: combine early-time and late-time (both non-local) and local new physics?
- Direction of late-time physics: lower  $d_A(z)$  at z > 0 (phantom/interacting DE?)
- BAO and high-z SNeIa actually can tolerate w as low as  $\sim -1.07$  (even -1.10?),  $\Delta H_0 \sim -20(1 + w)$ , so this can help as much as  $\Delta H_0 \sim 1.5$  SV, PRD 102 (2020) 023518
- If there is also some local new physics lowering local H<sub>0</sub>, maybe don't need non-local H<sub>0</sub> to go all the way up to ~ 74 after all? (two can meet halfway)
- Early-time new physics probably still need to do the lion's share of the job...
- Early+late: can two models decouple, both "push" non-local H<sub>0</sub> up separately, combining their tension-solving virtues "in phase" / "constructively"?

Objection: wouldn't this violate Occam's razor? (my opinion  $\downarrow$ )

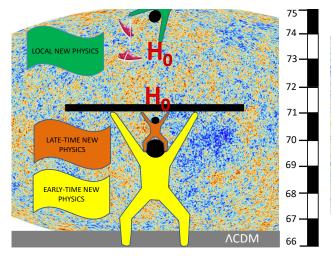



#### Where to from here? What about the $S_8$ tension?


Early times: a relatively successful early-time model (EDE and variants,  $\Delta m_{e},...$ ) <u>Late times</u>: scattering-type new physics (at 1st order does not affect background but only perturbations) involving DM and/or DE  $\rightarrow$  decouple  $S_8$ -solving effects from  $H_0$ -solving ones, combine the two constructively?

Example: DE-baryon scattering

$$\dot{\theta}_{b} = -\mathcal{H}\theta_{b} + c_{s}^{2}k^{2}\delta_{b} + \frac{4\rho_{\gamma}}{3\rho_{b}}a_{ne}\sigma_{T}(\theta_{\gamma} - \theta_{b}) + (1 + w_{x})\frac{\rho_{x}}{\rho_{b}}a_{ne}\sigma_{xb}(\theta_{x} - \theta_{b})$$


$$\dot{\theta}_{x} = -\mathcal{H}(1 - 3c_{s}^{2})\theta_{x} + \frac{c_{s}^{2}k^{2}}{1 + w_{x}}\delta_{x} + a_{ne}\sigma_{xb}(\theta_{b} - \theta_{x})$$





### Where to from here?

Pictorial representation of what I think could be a promising scenario



# Conclusions

- Seve(ral/n) hints that early-time new physics alone cannot solve the Hubble tension
- My opinion: will probably need a combination of early-time and late-time (both non-local) and local new physics, non-local and local  $H_0$  might not need to meet at  $\sim$  74 but halfway
- "Decoupling" of early- and late-time tension-solving effects may also help S<sub>8</sub>: I find scattering-type models particularly promising

Stay tuned for more details soon!

#### Opinion

# Seven hints that early-time new physics alone is not sufficient to solve the Hubble tension

Sunny Vagnozzi 1,200

- <sup>1</sup> Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (TN), Italy
- <sup>2</sup> Istituto Nazionale di Fisica Nucleare (INFN)-Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Povo (TN), Italy E-mail: sumny.vagnozzi@unitn.it

SV, to be submitted (2023)