Cosmological Tensions Lecture 1
 Basics of theoretical and observational cosmology

Sunny Vagnozzi

Department of Physics, University of Trento Trento Institute for Fundamental Physics (TIFPA)-INFN
\square sunny.vagnozzi@unitn.it 臬 www.sunnyvagnozzi.com
16th Tonale Winter School on Cosmology 2023
Passo del Tonale (TN), 3-9 December 2023

The Hubble constant

Why care about H_{0} ?

- Allan Sandage, 1970: "Cosmology [is] the search for two numbers: the current rate $\left[H_{0}\right]$ and deceleration of the expansion $\left[q_{0}\right]$ "
- Adam Riess, 2019: " H_{0} is the ultimate end-to-end test for $\Lambda C D M$ "

The expanding Universe

The first Hubble diagram

Hubble, PNAS 15 (1929) 168
Redshift, comoving grid, scale factor, Hubble rate

$$
\begin{aligned}
\lambda_{\mathrm{obs}} & =\lambda_{\mathrm{emit}}(1+z) \\
\frac{1}{a} & =1+z \quad\left(a_{0} \equiv 1\right) \\
H(t) & \equiv \frac{1}{a} \frac{d a}{d t} \\
H_{0} & \equiv 100 \mathrm{hkm} / \mathrm{s} / \mathrm{Mpc}
\end{aligned}
$$

General Relativity and the FLRW metric

Einstein equations:

$$
G_{\mu \nu}\left(+\Lambda g_{\mu \nu}\right) \equiv R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R\left(+\Lambda g_{\mu \nu}\right)=8 \pi G T_{\mu \nu}
$$

Energy-momentum tensor for a perfect fluid:

$$
T_{\nu}^{\mu}=\operatorname{diag}(-\rho, P, P, P)
$$

Ricci tensor and Ricci scalar:

$$
R_{\mu \nu} \equiv \partial_{\alpha} \Gamma_{\mu \nu}^{\alpha}-\partial_{\nu} \Gamma_{\mu \alpha}^{\alpha}+\Gamma_{\beta \alpha}^{\alpha} \Gamma_{\mu \nu}^{\beta}-\Gamma_{\beta \nu}^{\alpha} \Gamma_{\mu \alpha}^{\beta}, \quad R \equiv g^{\mu \nu} R_{\mu \nu}
$$

Christoffel symbols (NOT a tensor):

$$
\Gamma_{\alpha \beta}^{\mu} \equiv \frac{g^{\mu \nu}}{2}\left(\partial_{\beta} g_{\alpha \nu}+\partial_{\alpha} g_{\beta \nu}-\partial_{\nu} g_{\alpha \beta}\right)
$$

Friedmann-Lemaître-Robertson-Walker (FLRW) metric (with $c=1$):

$$
d s^{2} \equiv g_{\mu \nu} d x^{\mu} d x^{\nu}=-d t^{2}+a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2} d \Omega^{2}\right], \quad d \Omega^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}
$$

Friedmann and continuity equations

First Friedmann equation:

$$
H^{2}=\left(\frac{1}{a} \frac{d a}{d t}\right)^{2}=\frac{8 \pi G}{3} \rho_{\mathrm{tot}}-\frac{k}{a^{2}}, \quad \rho_{\mathrm{tot}}=\rho+\rho_{\Lambda}=\rho+\frac{\Lambda}{8 \pi G}
$$

Critical density and fractional density parameters:

$$
\rho_{\text {crit }} \equiv \frac{3 H_{0}^{2}}{8 \pi G}, \quad \Omega_{i} \equiv \frac{\rho_{i, 0}}{\rho_{\text {crit }}}, \quad \Omega_{K} \equiv-\frac{k}{H_{0}^{2}} \Longrightarrow \sum_{i} \Omega_{i}=1
$$

Second Friedmann equation (acceleration equation):

$$
\frac{1}{a} \frac{d^{2} a}{d t^{2}}=-\frac{4 \pi G}{3}(\rho+3 P)
$$

Bianchi identity and continuity equation:

$$
\nabla_{\mu} G^{\mu \nu}=0 \Longrightarrow \nabla_{\mu} T^{\mu \nu}=0 \Longrightarrow \frac{d \rho}{d t}+3 H(\rho+P)=0
$$

Equation of state and solution to continuity equation:

$$
w \equiv \frac{P}{\rho} \Longrightarrow \rho(a)=\rho_{0} a^{-3(1+w)}
$$

Cosmic inventory

- (Non-relativistic) Matter: $w \approx 0 \Longrightarrow \rho_{m} \propto a^{-3}, a(t) \propto t^{\frac{2}{3}}$
$\Omega_{m} \sim 0.3, \quad \rho_{m}=\Omega_{m} \rho_{\text {crit }} a^{-3}$
* (Cold) Dark matter: $\Omega_{c} \sim 0.25, \quad \rho_{c}=\Omega_{c} \rho_{c r i t} a^{-3}$
* Baryons: $\Omega_{b} \sim 0.05, \quad \rho_{b}=\Omega_{b} \rho_{\text {crit }} a^{-3}$
- Photons: $w=1 / 3 \Longrightarrow \rho_{\gamma} \propto a^{-4}, a(t) \propto t^{\frac{1}{2}}$ $\overline{\Omega_{\gamma} \sim 5} \times 10^{-5}, \quad \rho_{\gamma}(a)=\pi^{2} / 15 T_{\gamma}(a)^{4}, \quad T_{\gamma}(a)=2.73 \mathrm{~K} / a(t)$
- (Massive) neutrinos: transition from relativistic to non-relativistic $\overline{\sum_{i} m_{\nu, i} \lesssim \mathcal{O}(0.1) \mathrm{eV}} \Longrightarrow \Omega_{\nu} \lesssim 2 \times 10^{-3}$
- Dark energy: if it is a cosmological constant, $w=-1 \Longrightarrow \rho_{\Lambda}=$ const , $a(t) \propto e^{t}$ $\overline{\Omega_{\Lambda} \sim 0.7,} \quad \rho_{\Lambda}=\Omega_{\Lambda} \rho_{\text {crit }}$ More generally can have $w \neq-1, \quad \rho_{\mathrm{DE}}=\Omega_{\mathrm{DE}} \rho_{\text {crit }} a^{-3(1+w)}$ (as long as $w<-1 / 3$)

First Friedmann equation revisited:

$$
H(z)=H_{0} \sqrt{\Omega_{m}(1+z)^{3}+\Omega_{\gamma}(1+z)^{4}+\Omega_{\mathrm{DE}}(1+z)^{3(1+w)}+\Omega_{\nu}(z)+\Omega_{K}(1+z)^{2}}
$$

Time evolution of the cosmic inventory

Distances and horizons

Conformal/comoving time/horizon/distance:

$$
d \eta \equiv \frac{d t}{a(t)} \Longrightarrow \eta=\int_{0}^{t} \frac{d t^{\prime}}{a\left(t^{\prime}\right)}=\int_{z}^{\infty} \frac{d z^{\prime}}{H\left(z^{\prime}\right)}, \quad \chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H\left(z^{\prime}\right)}
$$

Comoving Hubble radius:

$$
\chi_{H} \equiv \frac{1}{a H}
$$

Two objects cannot communicate today if they are separated by $d>\chi_{H}$, but could never have communicated if they are separated by $d>\eta$

Luminosity and angular diameter distances (in a spatially flat Universe):

$$
d_{A}=\frac{s}{\theta} \Longrightarrow d_{A}(z)=\frac{\chi(z)}{1+z} \quad F=\frac{L}{4 \pi d_{L}^{2}} \Longrightarrow d_{L}(z)=(1+z) \chi(z)
$$

$d_{L}(z)=(1+z)^{2} d_{A}(z)$ (Etherington distance-duality relation)

Things get interesting out of equilibrium...

$T \sim 0.01 \mathrm{MeV}: B B N$

$T \sim 0.1 \mathrm{eV}:$ recombination

Credits: Scott Dodelson

Coupled Einstein-Boltzmann equations

- how (perturbations to) the metric affect (perturbations to) particle distributions \rightarrow (perturbed) Boltzmann equations
- how (perturbations to) particle distributions affect (perturbations to) the metric \rightarrow (perturbed) Einstein equations

Equations to perturb:

$$
\begin{aligned}
G_{\mu \nu} & =8 \pi G T_{\mu \nu} \Longrightarrow \delta G_{\mu \nu}=8 \pi G \delta T_{\mu \nu} \\
\frac{d f}{d t} & =C[f] \Longrightarrow \delta\left(\frac{d(f+\delta f)}{d t}\right)=\delta C[f+\delta f]
\end{aligned}
$$

Perturbations

Scalar perturbations to the metric (conformal Newtonian gauge):

$$
g_{\mu \nu}=\operatorname{diag}\left[-1-2 \Psi(\mathbf{x}, t), a^{2}(t) \delta_{i j}(1+2 \Phi(\mathbf{x}, t))\right]
$$

Perturbed photon distribution (analogously for massless ν s with $\Theta \rightarrow \mathcal{N}$):

$$
f(\mathbf{x}, p, t)=\left\{\exp \left[\frac{p}{T(t)(1+\Theta(\mathbf{x}, p, t))}\right]-1\right\}^{-1}
$$

Photon temperature perturbation multipole moments:

$$
\Theta_{\ell} \equiv \frac{1}{(-i)^{\ell}} \int_{-1}^{1} \frac{d \mu}{2} \mathcal{P}_{\ell}(\mu) \Theta(\mu), \quad \mu \equiv \cos (\mathbf{k}, \hat{p})
$$

Dark matter first two moments (analogously for baryons with $\delta \rightarrow \delta_{b}, v \rightarrow v_{b}$):

$$
n_{\mathrm{dm}}=\int \frac{d^{3} p}{(2 \pi)^{3}} f_{\mathrm{dm}} \equiv n_{\mathrm{dm}}^{(0)}(t)[1+\delta(\mathbf{x}, t)], \quad v^{i} \equiv \frac{1}{n_{\mathrm{dm}}} \int \frac{d^{3} p}{(2 \pi)^{3}} f_{\mathrm{dm}} \frac{p \hat{p}^{i}}{E(p)}
$$

Coupled Einstein-Boltzmann system

Same set of coupled ODEs for each k (in the linear regime)

$$
\left\{\begin{array}{l}
\dot{\Theta}+i k \mu \Theta=-\dot{\Phi}-i k \mu \Psi-\dot{\tau}\left[\Theta_{0}-\Theta+\mu v_{b}-\frac{1}{2} \mathcal{P}_{2}(\mu) \Pi\right] \quad\left[\dot{\tau} \equiv-n_{e} \sigma_{T} a\right] \\
\Pi=\Theta_{2}+\Theta_{P 2}+\Theta_{P 0} \\
\dot{\Theta} P+i k \mu \Theta_{P}=-\dot{\tau}\left[-\Theta_{P}+\frac{1}{2}\left(1-\mathcal{P}_{2}(\mu)\right)\right] \\
\dot{\delta}+i k v=-3 \dot{\Phi} \\
\dot{v}+\frac{\dot{a}}{a} v=-i k \Psi \\
\dot{\delta}_{b}+i k v_{b}=-3 \dot{\Phi} \\
\dot{v}_{b}+\frac{\dot{a}}{a} v_{b}=-i k \Psi+\frac{\dot{\tau}}{R}\left(v_{b}+3 i \Theta_{1}\right) \quad\left[R \equiv 3 \rho_{b} / 4 \rho_{\gamma}\right] \\
\dot{\mathcal{N}}+i k \mu \mathcal{N}=-\dot{\Phi}-i k \mu \Psi \\
k^{2} \Phi+3 \dot{a}\left(\dot{\Phi}-\frac{\dot{a}}{a} \Psi\right)=4 \pi G a^{2}\left(\rho_{c} \delta+\rho_{b} \delta_{b}+4 \rho_{\gamma} \Theta_{0}+4 \rho_{\nu} \mathcal{N}_{0}\right) \\
k^{2}(\Phi+\Psi)=-32 \pi G a^{2}\left(\rho_{\gamma} \Theta_{2}+\rho_{\nu} \mathcal{N}_{2}\right) \\
\ddot{h}_{\alpha}+2 \frac{\dot{a}}{a} \dot{h}_{\alpha}+k^{2} h_{\alpha}=0 \quad[\alpha=+, x]
\end{array}\right.
$$

Initial conditions:

$$
\left\{\begin{array}{l}
\Phi\left(k, \eta_{i}\right)=-\Psi\left(k, \eta_{i}\right)=2 \Theta_{0}\left(k, \eta_{i}\right)=2 \mathcal{N}_{0}\left(k, \eta_{i}\right)=\Phi_{p}(k) \\
\delta\left(k, \eta_{i}\right)=\delta_{b}\left(k, \eta_{i}\right)=\frac{3}{2} \Phi_{p}(k) \\
\Theta_{1}\left(k, \eta_{i}\right)=\mathcal{N}_{1}\left(k, \eta_{i}\right)=\frac{i v\left(k, \eta_{i}\right)}{3}=\frac{i v_{b}\left(k, \eta_{i}\right)}{3}=-\frac{k \Phi_{p}}{6 a H}
\end{array}\right.
$$

Note: $4 \Theta_{0} " \sim$ " $\delta_{\gamma}, 4 \mathcal{N}_{0} " \sim " \delta_{\nu},-3 i \Theta_{1} " \sim$ " $v_{\gamma},-3 i \mathcal{N}_{1} " \sim " v_{\nu}$

Comoving wavelengths versus comoving horizon

At any given time there is a mode of increasingly large wavelength entering the horizon

Credits: Scott Dodelson (left); Daniel Baumann (right)

Horizon problem: why is the CMB so uniform even on the largest scales?
Flatness problem: why is the Universe so close to being spatially flat ($\Omega_{K}=0$ is an unstable fixed point in FLRW)?

Inflation

Period of accelerated expansion in the early Universe makes $1 / \mathrm{aH}$ shrink, η picks up most of its contributions at early times, and Universe is naturally "flattened"

[^0]
Outcomes of inflation

Most of inflation's expected outcomes are seen in data: ${ }^{\dagger}$

- Close to spatially flat Universe
- Nearly scale-invariant fluctuations $P_{\Phi}(k) \sim k^{-3} \quad \checkmark^{\star}$
- Nearly Gaussian fluctuations
- Mostly adiabatic fluctuations
- Phase coherence (inflation excites "cosine mode") \checkmark
- Coherent superhorizon fluctuations (especially $\ell<100$ TE)
- Primordial, nearly scale-invariant, nearly Gaussian tensor modes
${ }^{*} \Delta^{2}(k) \propto k^{3} P(k)=k^{n_{s}-1}$, with $n_{s} \sim 0.96$
†This is not to say inflation doesn't have problems, some would actually say quite the opposite...

Understanding inhomogeneities

We cannot predict exact realization of inhomogeneities, but we can predict their statistics \Longrightarrow Goal: solve for Φ and δ, ultimately care about $P_{\delta}(k)$

Baryon Acoustic Oscillations

$$
r_{s}=\int_{0}^{t_{\star}} d t \frac{c_{s}(t)}{a(t)}=\int_{z_{\star}}^{\infty} d z \frac{c_{s}(z)}{H(z)} \simeq \mathcal{O}(150) \mathrm{Mpc}
$$

Eisenstein, Seo \& White, ApJ 664 (2007) 660

Matter power spectrum

Important features:

- Equality turn-around
- BAOs
- Overall normalization $\propto 1 / \Omega_{m}$

Understanding anisotropies

We cannot predict exact realization of anisotropies, but we can predict their statistics \Longrightarrow Goal: solve for Θ, ultimately care about C_{ℓ}

$\Theta(\hat{n})=\sum_{\ell} \sum_{m} a_{\ell m} Y_{\ell m}(\hat{n}) \Longrightarrow\left\langle a_{\ell m}\right\rangle=0, \quad\left\langle a_{\ell m} a_{\ell^{\prime} m^{\prime}}^{\star}\right\rangle=\delta_{\ell m} \delta_{\ell^{\prime} m^{\prime}} C_{\ell}$

Physical meaning of the CMB power spectrum

$\ell \sim \pi / \theta$: inverse angular scale
C_{ℓ} : indication of how much T fluctuates with respect to the average in patches associated with given angular size

CMB temperature anisotropy power spectrum

Credits: Tonale Winter school organizers

Physical effects:

- SW
- Acoustic oscillations
- Damping
- Even-odd peak modulation (baryons)
- Secondary anisotropies (ISW, lensing)

Baryon Acoustic Oscillations beyond the CMB

BAO feature can also be detected statistically in the late-time clustering of large-scale structure tracers

What can we measure from BAO?

Eisenstein et al., ApJ 633 (2005) 560 (left); Tegmark et al., PRD 74 (2006) 123507 (right)

$$
\begin{aligned}
\theta_{\mathrm{BAO}}\left(z_{\text {eff }}\right) & =\frac{r_{s}}{d\left(z_{\text {eff }}\right)} \\
d\left(z_{\text {eff }}\right) & =\left\{d_{A}\left(z_{\text {eff }}\right), d_{H}\left(z_{\text {eff }}\right)=\frac{c}{H\left(z_{\text {eff }}\right)}, d_{\nu}\left(z_{\text {eff }}\right)=\left[\left(1+z_{\text {eff }}\right)^{2} d_{A}^{2}\left(z_{\text {eff }}\right) \frac{c z_{\text {eff }}}{H\left(z_{\text {eff }}\right)}\right]^{\frac{1}{3}}\right\}_{23 / 32}
\end{aligned}
$$

Standard rulers and standard candles

BAO are an example of standard ruler: once calibrated through r_{s}, they are an absolute distance (and therefore expansion rate) indicator

Type la Supernovae as standard candles

$$
\mu(z)=5 \log _{10}\left[\frac{d_{L}(z)}{10 \mathrm{pc}}\right]=m_{B}-M_{B}
$$

Credits: NASA, Adriana Manrique Gutierrez, Aaron E. Lepsch \& Scott Wiessinger
If M_{B} is not known, high- z (cosmographic) SNela are a relative distance indicator sensitive to unnormalized expansion rate $E(z) \equiv H(z) / H_{0}$

Planck power spectra

Current BAO and cosmographic SNela measurements

State-of-the-art: eBOSS BAO measurements and PantheonPlus sample of cosmographic SNela (with or without distance ladder calibration from SH0ES, more in Lecture 2)

eBOSS collaboration, PRD 103 (2021) 083533 (left); Scolnic et al., ApJ 938 (2022) 110 (right)

The Λ CDM model

Von Neumann revisited: "With 4 parameters I can fit an elephant, with 5 I can make him wiggle his trunk, and with 6 I can fit Planck data"

- $\omega_{b}=\Omega_{b} h^{2}$
- $\omega_{c}=\Omega_{c} h^{2}$
- $\theta_{s}=r_{s} / d_{A}\left(z_{\star}\right)$
- τ
- A_{s}
- n_{s}

Other parameters: $w=-1, w_{a}=0, \Omega_{K}=0, N_{\text {eff }}=3.044, M_{\nu}=0.06 \mathrm{eV}$, $\alpha_{s} \equiv d n_{s} / d \ln k=0, \beta_{s} \equiv d^{2} n_{s} / d(\ln k)^{2}=0, A_{\text {lens }}=1, Y_{p}=Y_{p}\left(\omega_{b}\right)$

Parameter	Plik best fit	Plik [1]	CamSpec [2]	$([2]-[1]) / \sigma_{1}$	Combined
$\Omega_{\mathrm{b}} h^{2} \ldots \ldots \ldots \ldots \ldots$	0.022383	0.02237 ± 0.00015	0.02229 ± 0.00015	-0.5	0.02233 ± 0.00015
$\Omega_{\mathrm{v}} h^{2} \ldots \ldots \ldots \ldots$	0.12011	0.1200 ± 0.0012	0.1197 ± 0.0012	-0.3	0.1198 ± 0.0012
$100 e_{\mathrm{MC}} \ldots \ldots \ldots \ldots$	1.040909	1.04092 ± 0.00031	1.04087 ± 0.00031	-0.2	1.04089 ± 0.00031
$\tau \ldots \ldots \ldots \ldots$	0.0543	0.0544 ± 0.0073	$0.0536_{-0.0009}^{+0.007}$	-0.1	0.0540 ± 0.0074
$\ln \left(10^{10} A_{\mathrm{s}}\right) \ldots \ldots \ldots \ldots$	3.0448	3.044 ± 0.014	3.041 ± 0.015	-0.3	3.043 ± 0.014
$n_{\mathrm{s}} \ldots \ldots \ldots \ldots$	0.96605	0.9649 ± 0.0042	0.9656 ± 0.0042	+0.2	0.9652 ± 0.0042

Impact of cosmological parameters on $P(k)$

Impact of cosmological parameters on C_{ℓ}

Geometrical degeneracy

Geometrical degeneracy (CMB observations alone)

How far away? d How tall? h
But I only know $\theta \approx h / d$!

Breaking the geometrical degeneracy (CMB plus late-time observations)

Answers:
Roughly 7m away (luckily!)
Roughly 3m tall (really?)

Next lecture

6 December, 9:00-9:50

Measuring the Hubble constant The Hubble tension

Distance ladder, inverse distance ladder, calibrators, tensions, and so on!

[^0]: Credits: Daniel Baumann

