Cosmological Tensions Lecture 2 Measuring the Hubble constant – the Hubble tension

Sunny Vagnozzi

Department of Physics, University of Trento Trento Institute for Fundamental Physics (TIFPA)-INFN

⊠ sunny.vagnozzi@unitn.it

☆ www.sunnyvagnozzi.com

16th Tonale Winter School on Cosmology 2023 Passo del Tonale (TN), 3-9 December 2023

How to measure H_0 ?

Always a good idea in cosmology: measure distances to measure the expansion rate

Luminosity distance:

$$d_L(z) = (1+z) \frac{1}{H_0 \sqrt{\Omega_K}} \sinh \left[H_0 \sqrt{\Omega_K} \int_0^z \frac{dz'}{H(z')} \right]$$

Angular diameter distance:

$$d_{A}(z) = \frac{1}{1+z} \frac{1}{H_0 \sqrt{\Omega_{K}}} \sinh \left[H_0 \sqrt{\Omega_{K}} \int_0^z \frac{dz'}{H(z')} \right]$$

Standard candles and standard rulers

In practice "infer distances" = "measure fluxes or angles"

Fluxes:

$$d_L = \sqrt{\frac{L}{4\pi F}}$$

L=intrinsic luminosity

Angles:

 $d_A = \frac{s}{\theta}$

s=intrinsic physical size

Measuring H_0 via the local distance ladder

Only strictly empirical (cosmology model-independent) way to measure H_0

<u>Idea</u>: measure d-z relation, extract H_0 from intercept

<u>Difficulty 1</u>: need to extend distance ladder into the Hubble flow so measured z is predominantly cosmological (no v_{pec} ...but not too far else parameters such as Ω_m start to matter)

Difficulty 2: each distance indicator has limited range of applicability

<u>Solution</u>: combine different distance indicators in different rungs, as long as two consecutive indicators have a (even limited) range of overlap

Calibrating the local distance ladder with Cepheids

Best known 3-rung distance ladder: Cepheid-calibrated SNela

Credits: adapted from Adam Riess and Silvia Galli

Applying the ladder

Units of H_0 always implicitly $\rm km/s/Mpc$ from now

SH0ES analysis: 75 MW Cepheids with *Gaia* EDR3 parallaxes (plus other geometric distances), >90 Cepheids, 42 calibrator SNeIa in 37 SNeIa+Cepheid hosts, 277 SNeIa in 0.0233 < z < 0.15 $\implies 1.4\%$ measurement of H_0 !

$H_0 = 73.04 \pm 1.04$ (Cepheid-calibrated SNeIa, R22)

Notes:

- need intermediate rung as SNela are rare events, not enough of them in the local Universe for direct parallax calibration
- Cepheids are standard candles through period-luminosity relation

Riess et al., ApJ Lett. 934 (2022) L7

Dissecting the local distance ladder

Calibrator (second rung)

Tip of the Red Giant Branch (TRGB)

Riess et al., ApJ Lett. 934 (2022) L7

Different reanalyses fall between 72.8 and 74.3

CCHP analysis: $H_0 = 69.8 \pm 0.8 \pm 1.7$ Freedman et al., ApJ 882 (2019) 34

Later reanalyses fall between 69.6 and 76.9 $_{7/30}$

Dissecting the local distance ladder

- 2nd rung Cepheids vs TRGB: currently most credible contenders, but no complete consensus on TRGB See review by Freedman, ApJ 919 (2021) 16
- 2^{nd} rung Mira variables (Miras; highly-evolved low-mass AGB stars) as SNela calibrators: $H_0 = 73.3 \pm 4.0$ Huang *et al.*, ApJ 889 (2020) 5
- 2^{nd} rung Surface brightness fluctuations (SBFs) as SNeIa calibrators: $H_0 = 70.50 \pm 2.37 \pm 3.38$ Khetan *et al.*, A&A 647 (2021) A72
- $2^{nd}/3^{rd}$ rung Cepheid- and TRGB-calibrated SBFs: $H_0 = 73.3 \pm 0.7 \pm 2.4$ Blakeslee et al., ApJ 911 (2021) 65
- $2^{nd}/3^{rd}$ rung Cepheid- and TRGB-calibrated SNell: $H_0 = 75.4 \pm 3.7$ de Jaeger et al., MNRAS 514 (2022) 4620
- $2^{nd}/3^{rd}$ rung Cepheid- and TRGB-calibrated baryonic Tully-Fisher relation: $H_0 = 75.1 \pm 2.5 \pm 1.5$ Schombert *et al.*, AJ 160 (2020) 71
- Only 2 rungs d-z relation for $z \lesssim 0.01$ Cepheids: $H_0 = 73.1 \pm 2.4$ Kenworthy *et al.*, ApJ 935 (2022) 83
- No rungs Water megamasers (stimulated emission from water rotational transition levels): $H_0 = 73.9 \pm 3.0$ Pesce et al., ApJ Lett. 891 (2020) L1
- Other possibilities GW standard sirens (with or without EM counterpart), γ-ray attenuation, HII galaxies, BH shadows,...

Strong lensing time-delay cosmography

Completely independent of the local distance ladder (but not completely cosmology model-independent, depends on Ω_m , w, Ω_K , etc.)

Perivolaropoulos & Skara, New Astron. Rev. 95 (2022) 101659

$$\Delta t = D_{\Delta t} \Delta \phi_L \propto rac{1+z_L}{c} rac{d_A(OL)d_A(OS)}{d_A(LS)} \propto rac{1}{H_0}$$

Main difficulty: mass-sheet degeneracy!

Strong lensing time-delay cosmography

$H_0 = 73.3 \pm 1.8$ (TDCOSMO, seven quasar time-delay lenses)

Birrer et al., A&A 643 (2020) A165

Attempting to break the mass-sheet degeneracy:

$$H_0 = 67.4 \pm 3.7$$

(TDCOSMO+SLACS)

Local measurements summary

Adapted from Perivolaropoulos & Skara, New Astron. Rev. 95

Adapted from Di Valentino *et al.*, Class. Quant. Grav. 38 (2021) 153001

(2022) 101659

The CMB as a (self-calibrated) standard ruler

Credits: Planck collaboration and Silvia Galli (left); Tristan Smith and Vivian Poulin (right)

$$\theta_s = \frac{r_s}{d_A(z_\star)} = 0.010411 \pm \underline{0.000003}$$
 (!!!)

Note: θ_s measured exquisitely, but r_s and d_A are model-dependent!

Credits: Silvia Galli

Steps to apply the CMB ruler

Within ACDM:

$$\theta_{s} = \frac{r_{s}}{d_{A}(z_{\star})}, \qquad r_{s} \simeq \int_{z_{\star}}^{\infty} dz \, \frac{c_{s}(z, \omega_{b}, \omega_{r})}{\sqrt{(\omega_{c} + \omega_{b})(1 + z)^{3} + \omega_{r}(1 + z)^{4}}}$$

• ω_r : exquisitely measured from T_{CMB} (e.g. COBE)

•
$$c_s(z) = (1 + 3\rho_b/4\rho_\gamma)^{-2}$$

- ω_b: infer from relative height of odd and even peaks, further improvement from damping tail
- ω_c : infer from early ISW effect (first peak height), potential envelope, further improvement from lensing-induced peak smoothing

$$\boxed{\begin{array}{c} \hline \theta_{\rm s} \\ \hline D_A(z=1100) \end{array}} r_{\rm s}$$

Credits: Silvia Galli

Steps to apply the CMB ruler

Within ACDM:

$$heta_s = rac{r_s}{d_A(z_\star)}\,, \qquad d_A(z_\star) \simeq 3 \int_0^{z_\star} dz \, rac{1}{\sqrt{\omega_\Lambda + \omega_{m}(1+z)^3 + \omega_r(z)}} \, {
m Gpc}$$

- $\omega_r(z)$: already known as before
- $\omega_m = \omega_c + \omega_b$: both terms already known as before
- θ_s : inferred from peak spacing, $\theta_s \simeq \pi/\Delta \ell = \pi/(\ell_{p+1} \ell_p)$
- ω_{Λ} : only remaining free parameter, to fix from $d_A(z_{\star}) = r_s \Delta \ell / \pi$
- Once ω_{Λ} is known, the whole evolution of H(z) is known, including $H(z=0) = H_0!$

Credits: Silvia Galli

Applying the CMB ruler: some important observations

- In Λ CDM, with all other *physical* densities fixed by early-Universe considerations, H_0 controls only the physical amount of dark energy
- In Λ CDM there is enough information/sufficiently few free parameters to constrain H_0 from the CMB...
- but this is *not* (necessarily) true in extensions of ACDM, especially late-time extensions (geometrical degeneracy)

Applying the ruler

$H_0 = 67.27 \pm 0.60$ (Planck 2018 TTTEEE+lowE)

Planck collaboration, A&A 641 (2020) A6

 $H_0 = 67.9 \pm 1.5$ (ACT DR4)

ACT collaboration, JCAP 2012 (2020) 047

Late-time guard rails

It is important to "stabilize" CMB-only constraints with late-time datasets, *especially when going beyond ACDM at late times*!

Planck collaboration, A&A 641 (2020) A6

These are in *very good* agreement with the expansion history inferred from *Planck* within Λ CDM (so in Λ CDM mostly a consistency check)!

Combining CMB and late-time guard rails

Combination consistent with CMB-only value of H_0 within Λ CDM, important sanity check!

$H_0 = 67.72 \pm 0.40$ (CMB+BAO+uncalibrated SNela)

Planck collaboration, A&A 641 (2020) A6

Hubble tension summary

Adapted from Perivolaropoulos & Skara, New Astron. Rev. 95

(2022) 101659

(2021) 153001

Hubble tension summary

Systematics?

Cepheid-calibrated distance ladder:

- systematics in 1st rung distances
- extinction
- metallicity
- o crowding/blending
- environmental dependence of Cepheid/SNela properties
- unknown unknowns...

CMB:

- beam systematics
- foregrounds
- instrumental systematics (e.g. half-wave plate systematics)
- atmosphere
- bandpass variability
- unknown unknowns...

If systematics are the answer, why do they conspire to make early-vs-late discrepancy consistent *across so many independent measurements*?

Inverse distance ladder

BAO measure $r_s/d \propto r_s H_0 \implies$ BAO can be calibrated with H_0 or $r_s!$

Classical distance ladder

- Determine *H*₀ from N-rung distance ladder
- Calibrate SNeIa d_L with H_0
- From BAO *d*_A in the same *z* range infer *r*_s

Inverse distance ladder

- Calibrate BAO with r_s prior (model-dependent)
- Transfer BAO calibration to SNela *d*_L in the same *z* range
- Extrapolate to z = 0 to infer H_0

If model-dependent r_s prior (CMB-dependent or not, more later) is correct, H_0 from inverse distance ladder and classical distance ladder should agree!

What does the tension mean?

Useful to look at r_s - H_0 plane

Knox & Millea, PRD 101 (2020) 043533

BAO data tell us that r_s has to decrease by $\simeq 7\%$! $r_s h \sim 100 \text{ Mpc} \Longrightarrow$ good fit with $r_s \sim 147$ and $H_0 \sim 67$ (ACDM) or $r_s \sim 136$ and $H_0 \sim 73_{_{23/30}}$

H_0 tension or r_s tension?

Aylor et al., ApJ 874 (2019) 4

 r_s inferred from distance ladder systematically lower than Λ CDM-based inferences for any dataset combination!

CMB- and SNela-free determinations of H_0

Can determine H_0 completely free of CMB data: BBN prior on ω_b used to calibrate r_s assuming pre-recombination H(z), then infer H_0 from BAO

Schöneberg, Lesgourgues & Hooper, JCAP 1910 (2019) 029

Larger error bars, but tension (assuming Λ CDM at early times) remains regardless of BBN model, determinations of Y_P and Y_{DP} , and BAO data

Reconstructing the late-time expansion history

BAO (sparse in redshift) and uncalibrated SNeIa (dense in redshift) highly complementary

Bernal et al., PRD 103 (2021) 103533

BAO+uncalibrated SNeIa very strongly constrain H(z) or E(z), do not allow more than 10% deviations from Λ CDM at $z \leq 2$

Tension between calibrators

The tension is between calibrators!

BAO: $\theta_s(z) = \frac{r_s}{d_A(z)}$

SNela:
$$\mu(z) = 5 \log_{10} d_L(z) + M_B$$

Tutusaus, Kunz & Favre, 2311.16862 (left); Efstathiou, MNRAS 505 (2021) 3866 (right)

Without change in calibration, BAO d_A and SNeIa d_L in an overlapping redshift range are incompatible!

Is the CMB closer to us?

With θ_s fixed, lower r_s implies lower d_A

Credits: Tristan Smith and Vivian Poulin

- Is the CMB closer to us?
- Are the spots in the CMB smaller than what we expect within ΛCDM ?

What is the Hubble tension, really?

3 different interpretations in order of increasing "correctness"

The Hubble tension is the mismatch between:

CMB vs SH0ES

 \rightarrow "Too wrong", ignores stabilizing role of late-time datasets (BAO, uncalibrated SNeIa,...)

- Inverse distance ladder (CMB+BAO+uncalibrated SNela) vs SH0ES
 → Still wrong, ignores many other local/late-time measurements
 besides SH0ES (TRGB, strong lensing time delays,...)
 (at this level the Hubble tension is best thought of as a M_B tension)
- Inverse distance ladder vs several low- $z H_0$ measurements \rightarrow most correct interpretation of the Hubble tension!

7 December, 11:30-12:20

How to solve the Hubble tension?

Early dark energy, varying electron mass, primordial magnetic fields, phantom dark energy, M_B transitions, and all that!