Cosmological Tensions Lecture 3 How (not) to solve the Hubble tension?

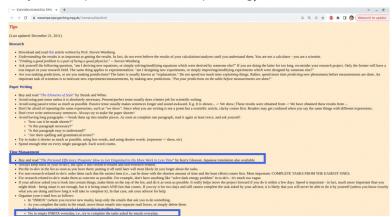
Sunny Vagnozzi

Department of Physics, University of Trento Trento Institute for Fundamental Physics (TIFPA)-INFN

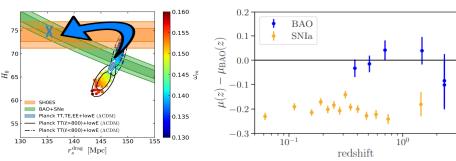
≤ sunny.vagnozzi@unitn.it

www.sunnyvagnozzi.com

16th Tonale Winter School on Cosmology 2023 Passo del Tonale (TN), 3-9 December 2023



Suggested book


The personal efficiency program, by Kerry Gleeson

(especially the chapters on email and planning)

What does the Hubble tension really mean?

Reminder: beyond the simplest CMB vs SH0ES interpretation, it is a tension between BAO (r_s) and SNeIa (M_B) calibrators

Knox & Millea, PRD 101 (2020) 043533

Tutusaus, Kunz & Favre, 2311.16862

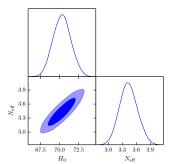
So we need to change either or both r_s and/or M_B !

A naïve first approach: CMB vs SH0ES

Introduce new physics such that a higher H_0 needed to keep θ_s fixed \implies Most extensions reduce tension by enlarging errors – no simple extension where H_0 high from CMB alone (in most cases H_0 lower)!

Table 5. Constraints on standard cosmological parameters from Planck TT.TE.EE+lowE+lensing when the base-ACDM model is extended by varying additional parameters. The constraint on τ is also stable but not shown for brevity; however, we include H_0 (in km s⁻¹Mpc⁻¹) as a derived parameter (which is very poorly constrained from Planck alone in the Λ CDM+ w_0 extension). Here α_{-1} is a matter isocurvature amplitude parameter, following PCP15. All limits are 68 % in this table. The results assume standard BBN except when varying Y_0 independently (which requires non-standard BBN). Varying A_1 , is not a physical model (see Sect. 6.2).

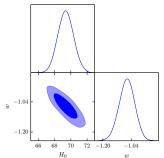
Parameter(s)	$\Omega_{\rm b}h^2$	$\Omega_{\rm c}h^2$	$100\theta_{\mathrm{MC}}$	H_0	$n_{\rm s}$	$\ln(10^{10}A_{\rm s})$
Base ΛCDM	0.02237 ± 0.00015	0.1200 ± 0.0012	1.04092 ± 0.00031	67.36 ± 0.54	0.9649 ± 0.0042	3.044 ± 0.014
r	0.02237 ± 0.00014	0.1199 ± 0.0012	1.04092 ± 0.00031	67.40 ± 0.54	0.9659 ± 0.0041	3.044 ± 0.014
$dn_s/d \ln k \dots$	0.02240 ± 0.00015	0.1200 ± 0.0012	1.04092 ± 0.00031	67.36 ± 0.53	0.9641 ± 0.0044	3.047 ± 0.015
$dn_s/d \ln k$, r	0.02243 ± 0.00015	0.1199 ± 0.0012	1.04093 ± 0.00030	67.44 ± 0.54	0.9647 ± 0.0044	3.049 ± 0.015
$d^2 n_s / d \ln k^2$, $d n_s / d \ln k$.	0.02237 ± 0.00016	0.1202 ± 0.0012	1.04090 ± 0.00030	67.28 ± 0.56	0.9625 ± 0.0048	3.049 ± 0.015
N _{eff}	0.02224 ± 0.00022	0.1179 ± 0.0028	1.04116 ± 0.00043	66.3 ± 1.4	0.9589 ± 0.0084	3.036 ± 0.017
N_{eff} , $dn_s/d \ln k$	0.02216 ± 0.00022	0.1157 ± 0.0032	1.04144 ± 0.00048	65.2 ± 1.6	0.950 ± 0.011	3.034 ± 0.017
Σm_{ν}	0.02236 ± 0.00015	0.1201 ± 0.0013	1.04088 ± 0.00032	67.1+1.2	0.9647 ± 0.0043	3.046 ± 0.015
$\Sigma m_{\nu}, N_{\text{eff}}$	0.02221 ± 0.00022	$0.1179^{+0.0027}_{-0.0030}$	1.04116 ± 0.00044	65.9+1.8	0.9582 ± 0.0086	3.037 ± 0.017
$m_{\nu, \text{ sterile}}^{\text{eff}}, N_{\text{eff}} \dots$	$0.02242^{+0.00014}_{-0.00016}$	$0.1200^{+0.0032}_{-0.0020}$	1.04074+0.00033	67.11+0.63	0.9652+0.0045	$3.050^{+0.014}_{-0.016}$
α_1	0.02238 ± 0.00015	0.1201 ± 0.0015	1.04087 ± 0.00043	67.30 ± 0.67	0.9645 ± 0.0061	3.045 ± 0.014
W0	0.02243 ± 0.00015	0.1193 ± 0.0012	1.04099 ± 0.00031		0.9666 ± 0.0041	3.038 ± 0.014
Ω_K	0.02249 ± 0.00016	0.1185 ± 0.0015	1.04107 ± 0.00032	63.6+2.1	0.9688 ± 0.0047	3.030 +0.017
Y _P	0.02230 ± 0.00020	0.1201 ± 0.0012	1.04067 ± 0.00055	67.19 ± 0.63	0.9621 ± 0.0070	3.042 ± 0.016
$Y_{\rm P}, N_{\rm eff}$	0.02224 ± 0.00022	$0.1171^{+0.0042}_{-0.0049}$	1.0415 ± 0.0012	66.0+1.7	0.9589 ± 0.0085	3.036 ± 0.018
A _L	0.02251 ± 0.00017	0.1182 ± 0.0015	1.04110 ± 0.00032	68.16 ± 0.70	0.9696 ± 0.0048	$3.029^{+0.018}_{-0.016}$


A naïve first approach: CMB vs SH0ES

$$\theta_s = \frac{r_s}{d_A(z_\star)} = \frac{\int_{z_\star}^{\infty} dz' c_s(z') / H(z')}{\int_0^{z_\star} dz'' / H(z'')}$$

Early-time new physics

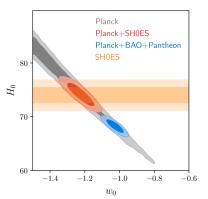
Decreases r_s , then H_0 increases to decrease $d_A(z_{\star})$ proportionally


Prototype: $N_{\rm eff} > 3.046$

Late-time new physics

Keeps r_s and $d_A(z_\star)$ fixed, but $d_A(z < z_\star)$ and thus $H(z < z_\star)$ change so H_0 is higher

Prototype: w < -1



Vagnozzi, PRD 102 (2020) 023518

Vagnozzi, PRD 102 (2020) 023518

The problem with late-time modifications

BAO and cosmographic SNela data (which help break the geometrical degeneracy) don't want huge late-time modifications to $\Lambda CDM \rightarrow really$ need to go and fix that sound horizon!

Credits: Vivian Poulin

Keeping θ_s fixed necessary but not sufficient condition for a good model!

Three important scales and angles

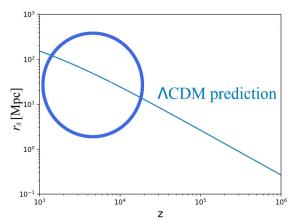
Sound horizon at recombination:

$$r_s = \int_{z_\star}^{\infty} dz \, \frac{c_s(z)}{H(z)} \implies \theta_s = \frac{r_s}{d_A(z_\star)}$$

Sound horizon at equality:

$$r_s^{\text{eq}} = \int_{z_{\text{eq}}}^{\infty} dz \, \frac{c_s(z)}{H(z)} \implies \theta_s^{\text{eq}} = \frac{r_s^{\text{eq}}}{d_A(z_\star)}$$

Damping scale:


$$r_d = \sqrt{\int_0^{\eta_\star} d\eta \, rac{1}{6(1+R)n_e\sigma_T a} \left[rac{R^2}{1+R} + rac{8}{9}
ight]} \implies heta_d = rac{r_d}{d_A(z_\star)}$$

Any good model has to keep θ_s , θ_d , θ_s^{eq} fixed!

Back to the sound horizon

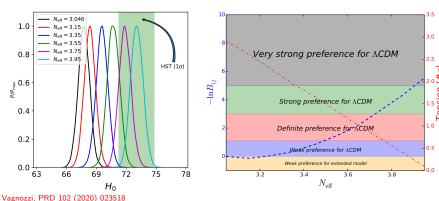
Which knobs do we need to play around with to reduce r_s ?

$$r_s = \int_{z_{\star}}^{\infty} dz \, \frac{c_s(z)}{H(z)} = \sqrt{\frac{3}{8\pi G}} \int_{z_{\star}}^{\infty} dz \, \frac{c_s(z)}{\sqrt{\rho_{\text{tot}}(z)}}$$


Credits: Vivian Poulin

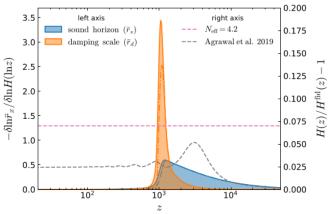
Increasing the pre-recombination expansion rate

Simplest possibility: effective number of relativistic species $N_{\rm eff} > 3.044$ (free-streaming dark radiation)


$$ho_r =
ho_\gamma \left[1 + rac{7}{8} \left(rac{4}{11}
ight)^{rac{4}{3}} N_{
m eff}
ight]$$

Effect on CMB (increase ω_c and h to keep θ_s fixed, Y_P to keep θ_d fixed)

Why free-streaming dark radiation fails


Need $N_{\rm eff} \gtrsim$ 4 to fully solve the tension, completely inconsistent with θ_d (disfavored by Planck high- ℓ polarization data)

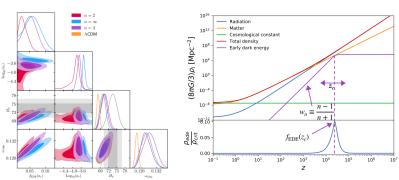
Possible extensions: self-interacting DR, free-streaming plus self-interacting DR, DR-DR scattering, DR-DM scattering,...

A key difficulty

How do r_s and r_d respond to changes in H(z) before recombination?

Knox & Millea, PRD 101 (2020) 043533

For $N_{\rm eff}$, $\delta r_d/r_d \sim 1/2 \, \delta r_s/r_s \implies 1/2$ is the problem!


Early dark energy

Scalar field initially frozen (Hubble friction), then dilutes faster than matter

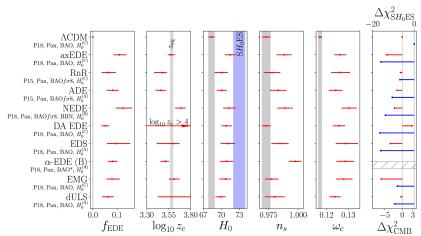
$$V_n(\phi) \propto (1-\cos\phi)^n$$
, $\ddot{\phi} + 3H\dot{\phi} + \frac{dV_n(\phi)}{d\phi} = 0$

Effective equation of state:

$$w(z>z_c)\approx -1 \quad w(z>z_c)\approx (n-1)/(n+1) \xrightarrow[n\to\infty]{} 1$$

Poulin et al., PRL 122 (2019) 221301 (left); Credits: Tanvi Karwal & Vivian Poulin (right)

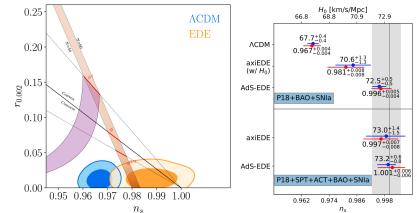
Variants of EDE


Many EDE-like models now exist in the literature! See reviews Poulin, Smith & Karwal,

PDU 42 (2023) 101348; Kamionkowski & Riess, ARNPS 73 (2023) 153

Credits: Marc Kamionkowski & Vivian Poulin

Status of EDE models

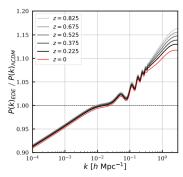


Poulin, Smith & Karwal, PDU 42 (2023) 101348

Interesting model not shown here: AdS-EDE

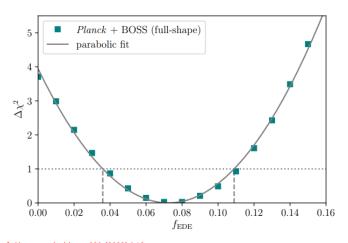
Implications for inflation

Return of the Harrison-Zel'dovich-Peebles spectrum ($n_s=1$)? θ_d increase when keeping θ_s fixed can be partially compensated by increasing n_s

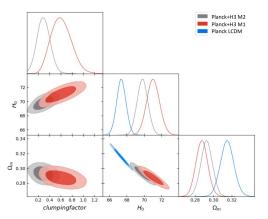

Poulin, Smith & Karwal, PDU 42 (2023) 101348 (left); Ye, Jiang & Piao, PRD 106 (2022) 103528 (right)

Is it too premature to perform inflationary model selection?

Potential problems with EDE


- ullet does not completely absorb shift in $heta_d$
- requires higher value of $\omega_c \to \text{predicts}$ excess power on small scales (worsens S_8 tension?)
- not preferred by Planck CMB data alone
- new coincidence and fine-tuning problems?
- vanilla potential hard to construct theoretically?

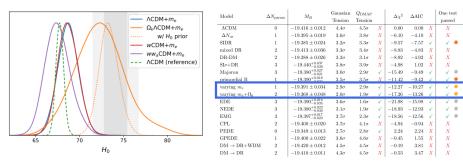
Parameter	ΛCDM	EDE (low ω_c)	
$100\omega_b$	2.253	2.253	2.253
ω_c	0.1177	0.1322	0.1177
$H_0 [\mathrm{km/s/Mpc}]$	68.21	72.19	72.19
τ	0.085	0.072	0.072
$\ln(10^{10}A_s)$	3.0983	3.0978	3.0978
n_s	0.9686	0.9889	0.9889
$f_{ m EDE}$	_	0.122	0.122
$\log_{10} z_c$	_	3.562	3.562
θ_i	_	2.83	2.83
n	_	3	3


Prior volume effects at play?

Bayesian constraints on f_{EDE} are potentially affected by prior volume effects \rightarrow useful to look at frequentist methods (e.g. profile likelihood)

Early recombination from primordial magnetic fields

PMF lead to small-scale (\sim kpc) inhomogeneities in baryon density (clumping) $\rightarrow \langle n_e^2 \rangle > \langle n_e \rangle^2 = \langle n_e^2 \rangle_{\text{hom}} \rightarrow \text{earlier recombination}$

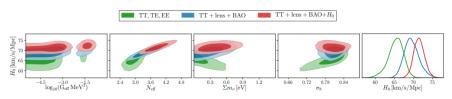


Credits: Levon Pogosian

Clumping factor
$$b \equiv (\langle n_b^2 \rangle - \langle n_b \rangle^2)/\langle n_b \rangle^2$$

Early recombination from varying electron mass

Higher m_e at recombination makes recombination occur earlier ($B \propto m_e$) Requires small shifts in ω_b and ω_m which can be reabsorbed by $\Omega_K < 0$



Sekiguchi & Takahashi, PRD 103 (2021) 083507 (left); Schöneberg et al., Phys. Rept. 984 (2022) 1

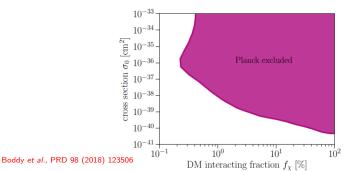
Key point for success: $\sigma_T \propto m_e^{-2}$ breaks $\delta r_d/r_d \sim 1/2\,\delta r_s/r_s$ scaling $\to \underline{\theta_d}$ virtually unchanged!

Strongly interacting neutrinos

Free-streaming neutrinos lead to phase shift $\theta_{\rm peak} \sim \theta_s + 0.6(\rho_\nu/\rho_\gamma)$ Neutrino interactions (4-point with strength $G_{\rm eff}$) suppress/delay free-streaming: fixed $\theta_{\rm peak}$ requires higher θ_s at fixed $r_s \to$ higher H_0 !

Kreisch, Cyr-Racine & Doré, PRD 101 (2020) 123505

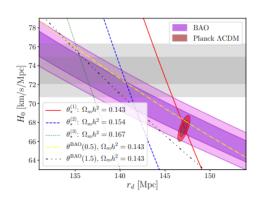
Solution requires $N_{\rm eff}\sim 4$, $M_{\nu}\sim 0.4\,{\rm eV}$, $G_{\rm eff}\sim 10^{-2}\,{\rm MeV}^2$

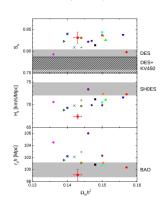

Problem: tension with BBN and laboratory constraints, completely excluded by Planck high- ℓ polarization (again problem with damping), disagreement with BAO due to unchanged r_s

Majoron variant (light mediator) solves part of these problems

Sound speed reduction?

$$c_s^2=rac{1}{3(1+R)}\,,\quad R=rac{3
ho_b}{4
ho_\gamma} o R=rac{3(
ho_b+
ho_x)}{4
ho_\gamma}?$$


Problem: x tightly coupled to b leads to even-odd peak modulation



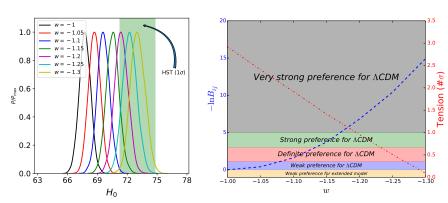
Non-standard DM- γ and/or DM-b interactions can change $c_s(z) \rightarrow$ problem: allowed cross-section too small to lead to any visible effect!

Generic problems for early-time modifications

Reducing r_s without touching ω_m can never fully resolve the Hubble tension – higher (lower) ω_m run in tension with WL/LSS (BAO) data

Jedamzik, Pogosian & Zhao, Commun. Phys. 4 (2021) 123

All promising early-time modifications worsen S_8 tension (more tomorrow)


Late-time modifications?

- Late-time wiggles?
 Possible very much in principle, unlikely physically and statistically
- Confusion sowing? Extremely likely that new late-time physics confuses ω_b and ω_m (would be in very strong tension with BBN and polarization)
- Distance-duality relation violation?
 Only fixes BAO and SNela, doesn't fix low H₀ from CMB, cannot explain high H₀ from time delays, challenging for model-building
- Post-recombination evolution of r_s ?

 Not impossible, but would lead to large (potentially unobserved?) bulk velocities, disfavored by success of BAO reconstruction

How extreme should late-time modifications be?

Need $w\sim -1.3$ to fully solve the tension, completely inconsistent with BAO and cosmographic SNeIa data

Vagnozzi, PRD 102 (2020) 023518

Late-time modifications: interacting dark energy

Throw in all remotely credible modifications to dark energy ($w \neq -1$, time-varying w, interactions with dark matter,...) at the same time

$$\dot{\rho}_c + 3H\rho_c = -\left(\dot{\rho}_{\mathsf{de}} + 3H(1+w_{\mathsf{de}})\rho_{\mathsf{de}}\right) = \xi H\rho_{\mathsf{de}}$$

Parameters	Planck	Planck + R19	Planck + lensing	Planck + BAO	Planck+Pantheon	All19
$\Omega_h h^2$	0.0224 ± 0.0002	0.0224 ± 0.0002	0.0224 ± 0.0002	0.0224 ± 0.0001	0.0224 ± 0.00012	0.0224 ± 0.0001
$\Omega_c h^2$	$0.132^{+0.005}_{-0.012}$	$0.133^{+0.006}_{-0.012}$	$0.133^{+0.006}_{-0.012}$	$0.134^{+0.007}_{-0.012}$	$0.134^{+0.006}_{-0.012}$	$0.132^{+0.006}_{-0.012}$
ξ	< 0.248	< 0.277	< 0.258	< 0.295	< 0.295	< 0.288
w	$-1.59^{+0.18}_{-0.33}$	-1.26 ± 0.06	$-1.57^{+0.19}_{-0.32}$	$-1.10^{+0.07}_{-0.04}$	$-1.08^{+0.05}_{-0.04}$	$-1.12^{+0.05}_{-0.04}$
H_0 (km/s/Mpc)	>70.4	74.1 ± 1.4	$85.0^{+10.0}_{-5.0}$	$68.8^{+1.1}_{-1.5}$	68.3 ± 1.0	69.8 ± 0.7
σ_8	0.88 ± 0.08	$0.80^{+0.06}_{-0.04}$	0.87 ± 0.08	0.75 ± 0.05	$0.76^{+0.05}_{-0.04}$	$0.76^{+0.06}_{-0.04}$
S_8	0.74 ± 0.04	0.78 ± 0.03	0.74 ± 0.04	0.79 ± 0.03	0.80 ± 0.03	$0.79^{+0.03}_{-0.02}$
ln B	-1.3	5.6	-1.6	-4.5	-5.2	-2.7
Strength	Positive	Very strong	Positive	Strong	Very strong	Positive
	(ACDM)	$(\xi p CDM)$	(ACDM)	(ACDM)	(ACDM)	(ACDM)

Di Valentino, Melchiorri, Mena & Vagnozzi, PRD 101 (2020) 063502

At best $H_0 \approx 70 \pm 1$: BAO and cosmographic SNela very unforgiving!

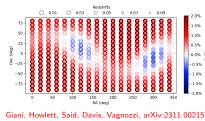
Late-time modifications: $\Lambda_s CDM$

Sign-switching cosmological constant:

$$\Lambda
ightarrow \Lambda_s = \Lambda_{s,0} {
m sgn}(z_\dagger - z)$$

Data set	CMB+Pan		CMB+Pan+Ly-α		CMB+Pan+BAO	
	ACDM	$\Lambda_{ m s}{ m CDM}$	ACDM	$\Lambda_{ m s}{ m CDM}$	ACDM	$\Lambda_{ m s}{ m CDM}$
$10^2 \omega_{\rm b}$	2.240 ± 0.015	2.241 ± 0.014	2.242 ± 0.013	2.241 ± 0.015	2.242 ± 0.013	2.235 ± 0.014
ω_{c}	0.1197 ± 0.0012	0.1196 ± 0.0011	0.1193 ± 0.0009	0.1196 ± 0.0011	0.1193 ± 0.0009	0.1206 ± 0.0010
$100\theta_s$	1.04191 ± 0.00029	1.04190 ± 0.00028	1.04191 ± 0.00029	1.04190 ± 0.00029	1.04194 ± 0.00028	1.04180 ± 0.00030
$\ln(10^{10}A_s)$	3.047 ± 0.015	3.041 ± 0.014	3.047 ± 0.014	3.040 ± 0.015	3.047 ± 0.015	3.040 ± 0.014
n_s	0.9662 ± 0.0042	0.9668 ± 0.0040	$0.9669^{+0.0039}_{-0.0036}$	0.9668 ± 0.0041	0.9665 ± 0.0037	0.9644 ± 0.0037
$ au_{ m reio}$	0.0556 ± 0.0075	0.0533 ± 0.0075	0.0560 ± 0.0069	0.0528 ± 0.0077	0.0561 ± 0.0076	0.0515 ± 0.0073
z_{\dagger}	_	$> 1.80~(95\%~{\rm CL})$	_	$2.21^{+0.16}_{-0.38}$	_	$> 2.13~(95\%~{\rm CL})$
M_B [mag]	-19.421 ± 0.014	$-19.363^{+0.021}_{-0.037}$	-19.418 ± 0.011	-19.349 ± 0.028	-19.418 ± 0.012	-19.387 ± 0.015
$\Omega_{\rm m}$	0.3129 ± 0.0071	$0.2940^{+0.0120}_{-0.0093}$	0.3110 ± 0.0053	0.2899 ± 0.0097	0.3109 ± 0.0056	0.3039 ± 0.0058
ω_{m}	0.1427 ± 0.0011	0.1427 ± 0.0010	0.1424 ± 0.0008	0.1426 ± 0.0010	0.1424 ± 0.0009	0.1436 ± 0.0010
$H_0 \ [\mathrm{km/s/Mpc}]$	67.55 ± 0.53	$69.68^{+0.77}_{-1.40}$	67.68 ± 0.40	$70.17^{+0.96}_{-1.10}$	$67.69^{+0.38}_{-0.43}$	$68.74^{+0.49}_{-0.55}$
t_0 [Gyr]	13.79 ± 0.02	$13.65^{+0.06}_{-0.04}$	13.79 ± 0.02	$13.62^{+0.09}_{-0.03}$	13.79 ± 0.02	$13.71^{+0.03}_{-0.02}$
σ_8	$0.8111^{+0.0056}_{-0.0063}$	$0.8167^{+0.0059}_{-0.0067}$	0.8104 ± 0.0060	0.8182 ± 0.0066	0.8101 ± 0.0063	0.8167 ± 0.0062
S_8	0.828 ± 0.013	0.809 ± 0.015	0.825 ± 0.010	0.804 ± 0.014	0.825 ± 0.011	0.822 ± 0.010
$-2 \ln \mathcal{L}_{max}$	3807.24	3805.00	3819.36	3806.88	3819.26	3819.06
$\ln Z$	-1937.82	-1938.02	-1944.53	-1939.75	-1944.51	-1944.76
$\Delta \ln Z$	0	0.20	4.78	0	0	0.25

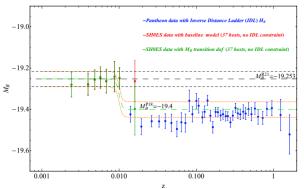
Akarsu et al., arXiv:2307.10899


At best $H_0 \approx 70 \pm 1$: BAO and cosmographic SNeIa very unforgiving!

Local structure to the rescue?

"Hubble bubble" of required magnitude excluded by SNela

Accounting for Laniakea worsens the tension?

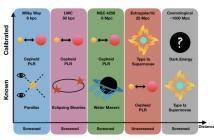

Camarena et al., CQG 39 (2022) 184001

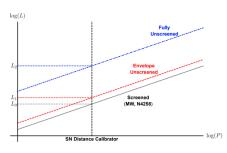
Local structure does not seem to help, but can actually make things worse!

Transitions in the SNela absolute magnitude

Transition of $\Delta M_B \sim -0.2$ around $z \sim 0.01$ could solve the tension See Marra

& Perivolaropoulos, PRD 104 (2021) L021303

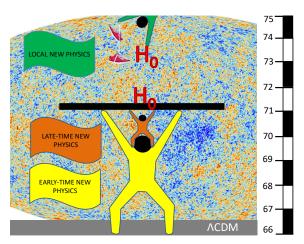



Perivolaropoulos & Skara, Universe 8 (2022) 502

 $G_{\rm eff}/G_{\rm N}\sim 0.9$ at $z\gtrsim 0.01$, due to modified gravity? Transition $\sim\!70$ Myrs ago \to dinos disappeared 65 Myrs ago?!?!? see Perivolaropoulos, Universe 8 (2022) 263

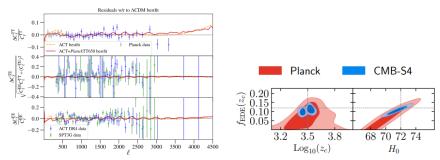
Cepheid miscalibration due to screened fifth forces

New gravitational physics can screen a fraction of the Cepheids and therefore bias the SNeIa calibration



Desmond, Jain & Sakstein, PRD 100 (2019) 043537

This works also for the TRGB (but not for time delays, at least not in an obvious way) See Desmond & Sakstein, PRD 102 (2020) 023007


Combining new physics at different times?

Solution may ultimately require a combination of early-time, late-time, and local new physics

The good news

Upcoming CMB data should detect proposed early-time modifications at very high significance

Poulin, Smith & Karwal, PDU 42 (2023) 101348 (left); Smith & Poulin, PRD 101 (2020) 063523 (right)

In 10 years, either we'll know one of these models is close to the truth, or we won't be talking about any one of them anymore!

Next lecture

8 December, 10:00-10:50

Is the Hubble tension the only problem with \(\Lambda CDM? \)

Go check out "Betteridge's law" ...