Mathematical Methods for Physicists Hand-in problems II

Due September 14, 2016 before 15:00. Email your nice $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ solutions to Sunny (sunny.vagnozzi@fysik.su.se). Scanned solutions will be accepted if, and only if, the quality is good enough to be read and corrected. Please submit solutions in electronic form in the pdf-format, only.
Good luck with the problems!

1. Write the stationary Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi=E \Psi
$$

in spherical coordinates, explicitly (\hbar, m and E are constants, $V=-\frac{1}{r}$ is a function of the distance to the origin, only). The solution can be written as $\Psi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)$. Find the solution for $\Phi(\phi)$ using separation of variables and set up the separated equations for the $R(r)$ and $\Theta(\theta)$ dependence.
2. Solve the one-dimensional heat equation

$$
\frac{\partial \psi}{\partial t}=a^{2} \frac{\partial^{2} \psi}{\partial x^{2}}
$$

for the temperature field $\psi(x, t)$ for a rod of length L, with position on the rod given by the variable x, with the two ends of the rod at $x=0$ and $x=L$ kept at the respective temperatures $\psi(x=0, t)=3$ and $\psi(x=L, t)=0$ for all times t. Initially, $\psi(x, t=0)=0$ for $0 \leq x \leq L$.
Hints: Try to find a general solution on the form $\psi(x, t)=u(x)+v(x, t)$, where the function $u(x)$ satisfies the stationary one-dimensional heat equation and initial conditions $u(0)=3$ and $u(L)=0$. Function $v(x, t)$ satisfies the time-dependent one-dimensional heat equation and initial conditions $v(0, t)=0, v(L, t)=0$ and $v(x, 0)=-u(x)$.
3. Let \mathcal{L} be a differential operator and G the corresponding Green's function.

Find the Green's function for
(a)

$$
\mathcal{L} y(x):=\frac{d^{2} y(x)}{d x^{2}}+y(x)
$$

with $y(0)=0$ and $y^{\prime}(1)=1$.
(b)

$$
\mathcal{L} y(x):=\frac{d}{d x}\left(x \frac{d y(x)}{d x}\right)-\frac{n^{2}}{x} y(x)
$$

with $y(0)$ finite and $y(1)=0$.
4. Consider the differential equation for the driven harmonic oscillator

$$
\frac{d^{2}}{d t^{2}} y(t)+\omega^{2} y(t)=f(t)
$$

with initial conditions $y_{0}=0, \dot{y}_{0}=0$, where $f(t)$ is some given forcing function. We rewrite

$$
f(t)=\int_{0}^{\infty} f\left(t^{\prime}\right) \delta\left(t^{\prime}-t\right) d t^{\prime}
$$

thus decomposing the driving force into an infinite sequence of impulses.
(a) Assuming you know the Green's function $G\left(t, t^{\prime}\right)$ satisfying

$$
\frac{d^{2}}{d t^{2}} G\left(t, t^{\prime}\right)+\omega^{2} G\left(t, t^{\prime}\right)=\delta\left(t^{\prime}-t\right)
$$

show that the solution can be written as

$$
y(t)=\int_{0}^{\infty} G\left(t, t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime}
$$

(b) Find the explicit Green's function satisfying the initial conditions $\left(G=0 ; \frac{d G}{d t}=0\right.$ for $t=0$) and using the above solution, write $y(t)$ for the explicit case $f(t):=\cos (\nu t)$ $(\nu \neq \omega)$.

