Mathematical Methods for Physicists Hand-in problems IV

Due September 28, 2016 before 15:00. Because Sunny (sunny.vagnozzi@fysik.su.se) will be away 19-28 September, physical solutions will not be accepted. Please make sure you email your solutions in PDF format, either typed or scanned. Remember to put your email on top.
[Total: 12 points]

1. Determine the nature of the singularities of each of the following complex functions f and g and evaluate the residues $(z \in \mathbb{C}, b>0)$
(a)

$$
f: \mathbb{C} \longrightarrow \mathbb{C} ; f: z \mapsto \frac{1}{\left(z^{2}+b^{2}\right)^{2}}
$$

[2 points]

(b)

$$
g: \mathbb{C} \longrightarrow \mathbb{C} ; g: z \mapsto \frac{1}{\sinh (\pi z)}
$$

(you might want to use the de l'Hopital rule)
[2 points]
2. (a) Explain how the residue is related to the Laurent series.
[1 point]
(b) Expand the complex function k

$$
k: \mathbb{C} \longrightarrow \mathbb{C}, k: z \mapsto \frac{e^{z}}{z^{3}}
$$

in its Laurent series around $z=0$ and find the residue.
[2 points]
(c) Find the residue of the complex function f

$$
f: \mathbb{C} \longrightarrow \mathbb{C}, f: z \mapsto \frac{1}{z\left(1+e^{z}\right)}
$$

in $z=0$.
[1 point]
3. Recall Cauchy's residue theorem. For $x \in \mathbb{R}$, calculate the following integrals using extension to the complex plane:
(a)

$$
I_{1}:=\int_{0}^{\infty} d x \frac{x \sin (x)}{1+x^{2}}
$$

[2 points]

(b)

$$
I_{2}:=\int_{0}^{\infty} d x \frac{x \sin (x)}{x^{2}-a^{2}}
$$

where $a>0$.
[2 points]
[Hint: think of $x \sin (x)$ as the imaginary part of $z e^{i z}$, for appropriate values of z.]

