Mathematical Methods for Physicists
 Hand-in problems VII

Due October 19, 2016 before 15:00. Email your solutions to Sunny
(sunny.vagnozzi@fysik.su.se), either LA_{E} 'd or scanned (PDF format), or if necessary photographed.
[Total: 14 points]

1. Work in spherical polar coordinates and prove the following relation:

$$
\frac{\partial}{\partial z}\left[\frac{P_{l}(\cos \theta)}{r^{l+1}}\right]=-(l+1) \frac{P_{l+1}(\cos \theta)}{r^{l+2}}
$$

The above equation is useful to show that the derivative of a multipole can be written in terms of the next higher-order multipole, which is very useful e.g. when studying perturbations to the Boltzmann equation in early Universe cosmology.
[3 points]
[Hint: $\frac{\partial}{\partial z}=\cos \theta \frac{\partial}{\partial r}-\frac{\sin \theta}{r} \frac{\partial}{\partial \theta}$.]
2. The spherical Bessel functions j_{n} may be seen as an integral transform of the Legendre polynomials P_{n}. Show that:

$$
\begin{equation*}
j_{n}(z)=\frac{1}{2}(-i)^{n} \int_{0}^{\pi} d \theta e^{i z \cos \theta} P_{n}(\cos \theta) \sin \theta \tag{1}
\end{equation*}
$$

where $n=0,1,2,3, \ldots$ [4 points]
[Hint: use $j_{n}(z)=\frac{z^{n}}{2^{n+1} n!} \int_{0}^{\pi} d \theta \cos (z \cos \theta) \sin ^{2 n+1} \theta$]
3. The amplitude of a scattered wave $f(\theta)$ calculated from the Schrödinger equation for a central scattering potential can be obtained by expanding the incident plane wave in terms of Legendre polynomials as shown above. The asymptotic approximation then reads:

$$
f(\theta)=\frac{1}{k} \sum_{l=0}^{\infty}(2 l+1) e^{i \delta_{l}} \sin \left(\delta_{l}\right) P_{l}(\cos (\theta))
$$

where $0 \leq \theta \leq 2 \pi$ is the scattering angle, l is the angular momentum eigenvalue, $\hbar k$ is the incident momentum and δ_{l} is the phase shift caused by the interaction with the central scattering potential. The total cross section is given by $\sigma_{t o t}=\int|f(\theta)|^{2} d \Omega$ with the solid angle Ω. Show that:

$$
\sigma_{t o t}=\frac{4 \pi}{k^{2}} \sum_{l=0}^{\infty}(2 l+1) \sin ^{2}\left(\delta_{l}\right)
$$

[4 points]

4. Prove that:

$$
\frac{1-t^{2}}{\left(1-2 t x+t^{2}\right)^{\frac{3}{2}}}=\sum_{n=0}^{\infty}(2 n+1) P_{n}(x) t^{n}
$$

[3 points]

[Hint: Evaluate $2 t \frac{\partial g(x, t)}{\partial t}+g(x, t)$, where $g(x, t)$ is the generating function.]

