Mathematical Methods for Physicists
 Hand-in problems VIII

Due November 4, 2016 before 15:00. Email your solutions to Sunny
(sunny.vagnozzi@fysik.su.se), either LATEX'd or scanned (PDF format), or if necessary photographed. Because of research travel there might be some delay in marking the handin.
[Total: 14 points]

1. Let $\tilde{f}(s) \equiv \mathcal{L}[f(t)]$ denote the Laplace transform, $k \neq 0$. Find the inverse Laplace transform satisfying: $\mathcal{L}^{-1}[\mathcal{L}[f(t)]]=f(t)$ for

$$
\tilde{f}(s)=\frac{s}{s^{2}-k^{2}}
$$

(a) using a partial fraction expansion and tabulated backtransforms.
[2 points]
(b) using the Bromwich integral.
[2 points]
2. (a) Find the Fourier transform of $f(x)$ defined as $f(x)=1-|x / 2|$ for $-2 \leq x \leq 2, f(x)=0$ elsewhere. [2 points]
(b) Evaluate the following integral using the Parseval relation:

$$
\int_{-\infty}^{\infty} d k\left(\frac{\sin k}{k}\right)^{4}
$$

[1 point]
3. Find the Laplace transform $\tilde{f}(s) \equiv \mathcal{L}[f(t)]$ of the following functions, with $a \geq 0$:
(a)

$$
f(t) \equiv \frac{\sin (a t)}{a t}
$$

[2 points]
(b)

$$
f(t) \equiv \frac{\sinh (a t)}{a t}
$$

[2 points]
4. The one-dimensional neutron diffusion equation with a plane source is:

$$
-D \frac{d^{2} \Phi(x)}{d x^{2}}+K^{2} D \Phi(x)=Q \delta(x)
$$

where $\Phi(x)$ is the neutron flux, $\mathrm{Q} \delta(x)$ is the plane source at $x=0, \mathrm{D}$ and K^{2} are real constants. Solve the above equation for $\Phi(x)$ by Fourier transforming.
[3 points]

